Magnetic Photocatalyst with p-n Junction: Fe₃O₄ Nanoparticle and FeWO₄ Nanowire Heterostructure

Xuan Cao, Yan Chen, Shihui Jiao, Zhenxing Fang, Man Xu, Xu Liu, Lu Li, Guangsheng Pang* and Shouhua Feng

The band gaps of the Fe₃O₄/FeWO₄ and pure FeWO₄ were calculated by $\alpha h \nu = (h \nu - E_g)^n$. α is the absorbance, h is the Planck constant, ν is the phono frequency, E_g is the energy gap, and n is the pure numbers associated with the different types of electronic transitions. For n = 1/2, 2, 3/2, and 3, the transitions are the direct allowed, indirect allowed, direct forbidden, and indirect forbidden, respectively. The value of n for FeWO₄ equals to 1/2 and the band gap was estimated ($\alpha = 0$) to be 3.0 eV.

Fig. S1. As-prepared products with various pH value of the solution. Pure FeWO₄ nanowires (pH=3), Fe₃O₄/FeWO₄ heterojunction (pH=7), pure Fe₃O₄ (pH=12).

Fig. S2. SEM image of $Fe_3O_4/FeWO_4$ composite nanowires. (pH=7.5)

Fig. S3. TEM image of $FeWO_4$ nanowires. (pH=3)