Supporting Information

Au Nanoparticles Sensitized ZnO Nanopencil Arrays for Photoelectrochemical Water Splitting

Tuo Wang, Rui Lv, Peng Zhang, Changjiang Li, and Jinlong Gong*

Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

* Corresponding author: jlgong@tju.edu.cn; Fax: +86-22-87401818

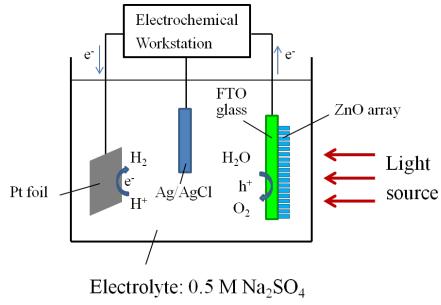
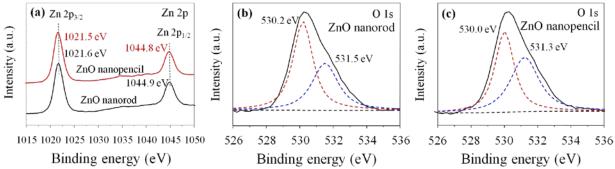



Fig. S1. Illustrative schematic of PEC measurements.

Fig. S2. (a) Zn 2p XPS spectra of ZnO nanorod and nanopencil arrays. (b) O 1s XPS spectra of ZnO nanorod arrays and (c) ZnO nanopencil arrays.

Samples	B.E.* of O in crystal lattice (eV)	B.E. of oxygen vacancy (eV)	The percent of O in crystal lattice [#] (%)	The percent of oxygen vacancy [#] (%)
ZnO nanorods	530.2	531.5	60.2	39.8
ZnO nanopencils	520.0	531.3	51.0	49.0

Table S1. XPS data of oxygen species on the surface of ZnO nanor	rod and ZnO nanopencil array.
--	-------------------------------

* B.E.: Binding energy. # The percentage of O in crystal lattice and oxygen vacancy is determined by integrating the peak areas in **Fig. S2** (b) and (c).