contrast agent ## $\label{eq:control} \begin{tabular}{ll} Electronic Supplementary Information \\ Ultrasmall biomolecule-anchored hybrid $GdVO_4$ \\ nanophosphors as a metabolizable multimodal bioimaging \\ \end{tabular}$ Kai Dong a,b , Enguo Ju a,b , Jianhua Liu c , Xueli Han c , Jinsong Ren *,a and Xiaogang $Qu *^{,a}$ ^a State Key laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China ^b University of the Chinese Academy of Sciences, Beijing, 100039, China ^c Department of Radiology, the Second Hospital of Jilin University, Changchun, Jilin 130041, China * Corresponding author. Tel./Fax: +86 431 85262625. E-mail address: jren@ciac.ac.cn. **Fig. S1** (a) Particle-size distribution of 6-aminocaproic acid capped GdVO₄:Eu³⁺ nanoparticles was observed from TEM images. (b) The hydrodynamic diameter of GdVO₄:Eu³⁺ nanoparticle was measured by dynamic light scattering (DLS). Fig. S2 FTIR spectrum of 6-aminocaproic acid capped GdVO₄:Eu³⁺ nanoparticles. **Fig. S3** Thermogravimetric analysis (TGA) curve of 6-aminocaproic acid capped $GdVO_4$: Eu^{3+} nanoparticles. **Fig. S4** Photos of 6-aminocaproic acid capped GdVO₄:Eu³⁺ nanoparticles in various solutions including phosphate buffered saline (PBS), DMEM cell medium, and fetal bovine serum (FBS). **Fig. S5** Phosphorescence decay of the aqueous nanoparticles collected at 620 nm (black dots). The red line is the best-fit curve. Fig. S6 Gd contents in mice excretions (feces and urine) in the first week after intravenous injection. Fig. S7 Change in body weight obtained from mice injected with $GdVO_4$: Eu^{3+} nanoparticles and without injection. Fig. S8 photos of mice organs with and without intravenous administration. Table S1. Hematology analysis and blood biochemical assay. | Test | Units | Control | Treatment | |---------------------|-------------------|------------------|------------------| | | | (mean±sd) | (mean±sd) | | Hematological | | | | | WBC | $\times 10^9/L$ | 5.27 ± 0.90 | 5.56 ± 0.75 | | RBC | $ imes 10^{12}/L$ | 9.05 ± 1.05 | 9.85 ± 0.92 | | HGB | g/L | 142.50 ± 15.00 | 153.00 ± 17.50 | | MCV | fL | 51.00±1.50 | 57.50 ± 2.00 | | MCH | pg | 15.00 ± 0.50 | 15.80 ± 1.00 | | MCHC | g/L | 255.00 ± 28.00 | 278.00 ± 25.00 | | PLT | $\times 10^9/L$ | 610.00 ± 50.00 | 625.00 ± 45.00 | | LY | % | 70.00 ± 2.00 | 72.00 ± 1.50 | | NE | % | 12.80 ± 0.90 | 12.90 ± 1.50 | | Biochemistry | | | | | ALT | U/L | 40.50 ± 8.50 | 45.00 ± 5.50 | | AST | U/L | 68.50 ± 9.50 | 62.50 ± 13.00 | | BUN | mmol/L | 6.20 ± 0.80 | 6.80 ± 0.60 | | CRE | mmol/L | 29.50±7.50 | 30.50 ± 9.50 |