contrast agent

$\label{eq:control} \begin{tabular}{ll} Electronic Supplementary Information \\ Ultrasmall biomolecule-anchored hybrid $GdVO_4$ \\ nanophosphors as a metabolizable multimodal bioimaging \\ \end{tabular}$

Kai Dong a,b , Enguo Ju a,b , Jianhua Liu c , Xueli Han c , Jinsong Ren *,a and Xiaogang $Qu *^{,a}$

^a State Key laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China

^b University of the Chinese Academy of Sciences, Beijing, 100039, China

^c Department of Radiology, the Second Hospital of Jilin University, Changchun, Jilin 130041, China

* Corresponding author. Tel./Fax: +86 431 85262625.

E-mail address: jren@ciac.ac.cn.

Fig. S1 (a) Particle-size distribution of 6-aminocaproic acid capped GdVO₄:Eu³⁺ nanoparticles was observed from TEM images. (b) The hydrodynamic diameter of GdVO₄:Eu³⁺ nanoparticle was measured by dynamic light scattering (DLS).

Fig. S2 FTIR spectrum of 6-aminocaproic acid capped GdVO₄:Eu³⁺ nanoparticles.

Fig. S3 Thermogravimetric analysis (TGA) curve of 6-aminocaproic acid capped $GdVO_4$: Eu^{3+} nanoparticles.

Fig. S4 Photos of 6-aminocaproic acid capped GdVO₄:Eu³⁺ nanoparticles in various solutions including phosphate buffered saline (PBS), DMEM cell medium, and fetal bovine serum (FBS).

Fig. S5 Phosphorescence decay of the aqueous nanoparticles collected at 620 nm (black dots). The red line is the best-fit curve.

Fig. S6 Gd contents in mice excretions (feces and urine) in the first week after intravenous injection.

Fig. S7 Change in body weight obtained from mice injected with $GdVO_4$: Eu^{3+} nanoparticles and without injection.

Fig. S8 photos of mice organs with and without intravenous administration.

 Table S1. Hematology analysis and blood biochemical assay.

Test	Units	Control	Treatment
		(mean±sd)	(mean±sd)
Hematological			
WBC	$\times 10^9/L$	5.27 ± 0.90	5.56 ± 0.75
RBC	$ imes 10^{12}/L$	9.05 ± 1.05	9.85 ± 0.92
HGB	g/L	142.50 ± 15.00	153.00 ± 17.50
MCV	fL	51.00±1.50	57.50 ± 2.00
MCH	pg	15.00 ± 0.50	15.80 ± 1.00
MCHC	g/L	255.00 ± 28.00	278.00 ± 25.00
PLT	$\times 10^9/L$	610.00 ± 50.00	625.00 ± 45.00
LY	%	70.00 ± 2.00	72.00 ± 1.50
NE	%	12.80 ± 0.90	12.90 ± 1.50
Biochemistry			
ALT	U/L	40.50 ± 8.50	45.00 ± 5.50
AST	U/L	68.50 ± 9.50	62.50 ± 13.00
BUN	mmol/L	6.20 ± 0.80	6.80 ± 0.60
CRE	mmol/L	29.50±7.50	30.50 ± 9.50