
        
       

Daglar & Bayindir, et al. | bg.bilkent.ed.tr | Anemone-like nanostructures for SERS substrates        1 / 13 
 

 
Supplementary Information  

 
Anemone-like nanostructures for non-lithographic, reproducible, 

large-area, and ultra-sensitive SERS substrates 

 

Bihter Daglar,ab Gokcen Birlik Demirel,ac Tural Khudiyev,a  Tamer Dogan,ad Osama Tobail,ae 

Sevde Altuntas,f Fatih Buyukserinf and Mehmet Bayindir,*abd 

 

 

 
aUNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey 
bInstitute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey 
cDepartment of Chemistry, Gazi University, Polatli, 06900 Ankara, Turkey 
dDepartment of Physics, Bilkent University, 06800 Ankara, Turkey 
eEgypt Nanotechnology Center, Cairo University, 12588 Cairo, Egypt 
fDepartment of Biomedical Engineering, TOBB University, 06560 Ankara, Turkey 

*E-mail: bayindir@nano.org.tr 

  

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2014



        
       

Daglar & Bayindir, et al. | bg.bilkent.ed.tr | Anemone-like nanostructures for SERS substrates        2 / 13 
 

 

 

Table of Contents 

 

Enhancement factor (EF) calculations          3 

Relative standard deviation (RSD) calculations        4 

SEM images of AAO membrane and polymer nanopillars      5 

Snapshots of the finate element method (FEM) simulation      6 

Pressure effect on the polymer          7 

Wetting and pressure effect          8 

SEM image of the anemone-like polymeric nanopillars after thermal evaporation.               9 

SERS enhancement factor by FDTD simulations                 10 

SEM image of the bare film                   11 

Reproducability of the SERS spectra                  12 

Confocal microscopy image and fluorescence intensity profile                13 

 

 

  



        
       

Daglar & Bayindir, et al. | bg.bilkent.ed.tr | Anemone-like nanostructures for SERS substrates        3 / 13 
 

Enhancement factor (EF) Calculations:  

 

SERS spectrum of 10-12 M Rhodamin 6G (R6G) on nanostructured Polycarbonate (PC) film and 

Raman spectrum of 10-3 M R6G on non-structured (bare) PC film were compared. EF was 

calculated as 5.7x1011 with respect to the peak at 610 cm-1. 

EF is defined as 

EF ൌ ቆ
Iୗୖୗ	/Nୗୖୗ

Iୖୟ୫ୟ୬/Nୖୟ୫ୟ୬
ቇ 

Both of the substrates were coated with 40 nm silver using thermal evaporation and samples were 

drop casted. Droplets have a diameter about ~ 4340 µm, which is also shown in the Figure S8. 

NSERS and NRaman refer the number of probed molecules on the substrates. As seen in the Figure 8, 

dried droplets do not have a uniform distribution. To eliminate experimental errors, same volume 

(6 µL) of samples were dropped on the surface. The measurements were performed at the same 

regions of droplets using microscope of RAMAN module (Raman module, WITEC alpha 300S). 

Number of probed molecules were calculated using concentration of solutions (C), Avogadro 

number (NA), molecular weight (Mw) and measurement volume (V). Data were collected by 50X 

objective with a 0.4 µm spot size. 

ISERS and IRaman are the measured SERS and Raman intensities of the Rhodamin 6G (R6G) 

molecules on the substrates. Measured intensities were corrected based on the acquisition time (t) 

and power (P). 

Corrected Intensity (ICorr) is defined as 

Iେ୭୰୰ ൌ Iୣୟୱ୳୰ୣୢ
ሺtPሻൗ  

 

Samples were excited by a 532 nm laser source at 50 µW and 40 mW powers for nanostructured 

and non-structured substrates, respectively. For both of the substrates, signals were collected with 

1s acquisition time.  
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Relative Standard Deviation (RSD): 

RSD is defined as the ratio of standard deviation to the mean. About 10,000 individual spots were 

collected for the 10-7 M R6G concentration on nanostructured surface, which was mapped 5x5 µm2 

at different regions (Figure S7). SERS spectra are consistent for the other concentrations of R6G. 

RSDs for the 610, 777, 1365, 1578 and 1650 cm-1 peaks were determined as 8.4, 7.2, 9.6, 12.6 and 

8.9%, respectively. 

In addition, we imaged the sample that was used to calculate RSD values by confocal microscopy 

(LSM 510, Zeiss). R6G was excited by Ar laser with 488 nm wavelength and emission was 

collected by a high-pass filter with 505 nm cutoff wavelength. Imaged part of the droplet and 

fluorescence profile are given in the Figure S8, fluorescence intensity (ܫ) was profiled using 

ImageJ. Droplet was examined as a function of radius ƒ(ݎ) and we assumed fluorescence intensity 

is uniform through the circle (2π	ݎ). We observed a difference between the right and left side of 

the profile, intensities were averaged and amount of fluorescence was calculated by ሻܫݎሺߨ2



 ݎ݀

(Figure S8 b). In literature, it is accepted that relationship between the concentration and 

fluorescence intensity is linear for low concentrations of R6G.[1] Total amount of fluorescence 

intensity was calculated as 3.34x1013. Total amount of molecules was calculated as 3.612x1011, by 

volume of droplet (6 µL), concentration (10-7 M), and NA. In the working region of droplet, which 

is also showed by red dashed circle in Figure S8, about 457 molecules were calculated per spot 

(0.4 µm).   

                                                            
1 Hildebrandt, P.; Stockburger, M. Surface‐Enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed 
on Colloidal Silver. J. Phys. Chem. 1984, 88, 5935‐5944. 
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Figure S1. SEM images of AAO membrane and polymer nanopillars. SEM images of (a) AAO 

membrane supported on aluminium and (b) produced Polycarbonate (PC) nanopillars are given. 

Hexagonally packed ordered nanopores of the AAO template provide highly dense polymeric nanopillars. 

Area of the produced nanopilllars are directly proportional to the area of AAO membrane. 
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Figure S2. Snapshots of the finate element method (FEM) simulation. Polycarbonate infiltration into 

porous alumina membrane was simulated with pore diameter of 100 nm and pore depth of 1500 nm at 215 
oC. 0.2% leakage was assumed to enable replacing air by polymer, while the driving force of polymer motion 

is the wetting as determined experimentally (contact angle of 50o). Also, buble formation was observed at 

the poymer film in the experiments, which supports the leakage requirements in FEM simulations. Red and 

blue regions are respectively represent the polymer and air through the nanopore depth.  
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Figure S3. Pressure effect on the polymer. (a) Wetting is considered with a contact angle of = 50o and (b) 

no wetting is considered but instead friction is modelled at the pore wall as a no-slip boundary at 200 oC. 

The wetting is the origin of the experimentally observed cavity, while pressing decreases this cavity. In the 

case of (a) the cavity slightly return, however, in (b) when the pressure and friction dominates, the profile 

is also similar to the observed shape in case of pressing the polymer. 
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Figure S4. Wetting and pressure effect. SEM images of the nanopillars are given which were produced 

both under the effect of wetting and pressure. We see there is a competition between the cap shapes of the 

pillars, which is also showed by FEM simulations in Figure S3. 
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Figure S5. SEM image of the anemone-like polymeric nanopillars. Image is taken after coating with 40 

nm silver using thermal evaporation. There is observed silver nanoparticle formation on the coated surface 

about 20 nm. 
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Figure S6. SERS enhancement factor by FDTD Simulations. Because produced polymeric 
nanopillars bend and distance between the nanopillars get narrow, we simulated nanopillars for 
different distances. We observed that enhancement increase up to 108 values when the distance 
between nanopillars decrease.  
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Figure S7. SEM image of the bare film. 40 nm silver coated bare polycarbonate (PC) film is given, which 

was produced under the same conditions of the nanostructured films. Bare film has roughness at a certain 

point on itself. Enhancement factor was calculated using the SERS spectrum of 10-12 M Rhodamin 6G (R6G) 

on nanostructured Polycarbonate (PC) film and Raman spectrum of 10-3 M R6G on this bare PC film. 
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Figure S8. Reproducibility of the SERS spectra. SERS spectra of R6G on silver coated anemone-like 

structured substrate were collected between 350 cm-1 and 2900 cm-1 with 1 s integration time. Data was 

collected from 10,000 individual spots, and spectra is given for 40 spots with 250 interval, periodically.  
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Figure S9. Confocal Microscopy image, fluorescence intensity profile, and amount of fluorescence as 
a function of radius (r). (a) Fluorescence intensity profile was derived from the confocal microscopy image 
which is given between the two graphics (a) and (b).  ImageJ programme was used and observed that 
molecules aggregate non-uniformly at the edge region of droplet. (b) This nonuniformity is considered while 
calculating the amount of fluorescence for whole droplet region and it is assumed that intensity profile is 
consistent through the droplet radius.      


