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S1. The effect of carbon nanostructures on the enantiopurity of the HPESW 
products

Table S1. The effect of carbon nanotubes on the enantiopurity of the products of the HPSEW 
reaction. Following extraction and chromatographic separation of 2 and 3 from the respective crude 
reaction mixtures, the enantiopurity of compounds 2 and 3 in the absence (entry 8, Table 1) and 
presence (entry 2, Table 1) of CoMoCAT SWNT were determined by polarimetry. These 
measurements show that the enantiopurity is unaffected by the presence of carbon nanotubes and 
indicates that interactions between carbon nanotubes and the endocyclic nitrogen of S-(-)-proline do 
not disrupt the translation of the chirality of the organocatalyst into the final product. This is 
consistent with a previous literature study [Yin, J. Cat., 2013, 298 138] which showed that the 
catalytic properties of proline in the asymmetric Aldol reaction are preserved upon physisorption on 
graphene oxide.

[α]D/o (ee/%) aProduct
with CoMoCAT SWNT without CoMoCAT SWNT

2 +39.8 (70.3) +39.1 (68.9)
3 +225.4 (71.6) +224.7 (71.3)

a calculated from literature analogues [Org. Bio. Chem., 2007, 5, 3190].
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S2. The effects of concentration and organocatalyst loading on the HPESW reaction

Effect of concentration

Fig. S1 The relationships between reactant concentration and conversion into products (y = 8.8 + 
70.8e-x/2.8, R2 = 0.94) and selectivity for 2 (y = 84.1 – 30.4-x/0.4, R2 = 0.99) for data obtained from this 
series.

Effect of catalyst loading

Fig. S2 The relationships between catalyst loading and conversion into products (y = 55.1 – 50.3e-x/2.9, 
R2 = 0.96) and selectivity for 2 (y = 81.4 + 13.1e-x/4.0, R2 = 0.95) for data obtained from this series.
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S3. Assessing the interactions between S-(-)-proline and carbon nanostructures by 
Raman spectroscopy and transmission electron microscopy

(i) Raman spectroscopy

Fig. S3 Raman spectroscopy analysis of (a) CoMoCAT SWNT and (b) GNF before and after (blue, 
bottom and red, top respectively) the HPESW reaction.  

Table S2. Analysis of carbon nanostructures before and after the HPESW reaction for nanostructures 
with both high and low pyramidalisation angles. The frequency of the radial breathing modes (νRBM) is 
sensitive to the adsorption of species on the exterior surfaces of carbon nanotubes, with downfield 
shifts and increases in intensity associated with physisorption. The G band arises due to vibrations of 
carbon atoms along the nanotube axis and the frequency of the G band (νG) can be affected by 
desymmetrisation from cylindrical morphology and/or charge transfer interactions with adsorbates. 
The ratio of the D band to the G band (ID/IG) is a measure of the ratio of sp2/sp3-hybridised carbons in 
an infinite graphene lattice and therefore can be used to quantify the extent of nanotube 
functionalisation. No significant changes in any of these parameters after the HPESW indicates that 
no physical adsorption or covalent bonding of S-(-)-proline to the carbon nanotube sidewall occurs 
under the conditions of the reaction [J. Phys. Chem. C, 2012, 116, 1724] and this is consistent for 
nanostructures with high (CoMoCAT SWNT) and low (GNF) curvature.

νRBM / cm-1 νG / cm-1 ID/IG ratioCarbon 
nanotube before after before after before after

CoMoCAT 
SWNT

260.8±0.9 
281.9±0.9 
294.9±1.5 
301.4±0.9

261.6±1.1 
282.4±0.9 
295.4±0.9 
302.4±1.5

1578.7±3.1 1580.7±3.8 0.11±0.01 0.12±0.01

GNF - - 1564.1±2.3 1567.2±1.7 0.15±0.03 0.16±0.05
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(ii) Transmission electron microscopy

Fig. S4 Transmission electron microscopy analysis of CoMoCAT SWNT (a,b) before and (c,d) after 
the HPESW reaction. No changes in sidewall corrugation or bundling characteristics were observed 
subsequent to the HPESW reaction, supporting the evidence from Raman spectroscopy that no 
covalent bond formation of proline with SWNT occurs under the conditions of the reaction.
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S4. Assessing the interactions between molecules and carbon nanostructures by 
simple titration

2-methyl-2-(3-oxobutyl)cyclopentane-1,3-dione 1 and carbon nanostructures

Methodology

To 1 (15.8 mg) in deuterated chloroform (1 mL) was added carbon nanostructures (5 mg) and 
the combined suspension homogenised by bath sonication at room temperature for 30 min. 
The carbon nanostructures were removed from the suspension by syringe filtration (0.45 µm 
PTFE membrane) and the filtrate analysed by 1H NMR spectroscopy. The characteristic 
peaks corresponding to the methyl protons were then integrated relative to the solvent.

Table S3. The affinity of 1 for carbon nanostructures. The low percentage of 1 sequestered by carbon 
nanostructures indicates that changes in concentration associated with adsorption is not a viable 
explanation for the observed change in yields and product distribution of the HSEPW reaction upon 
addition of carbon nanostructures. It is important to note that similar titration measurements assessing 
the affinity of the organocatalyst for carbon nanostructures could not be conducted due to the 
inherently low solubility of proline in chloroform [Angew. Chem. Int. Ed., 2006, 45, 4593]. As such 
the reaction solvent is saturated with proline and thus the addition of nanotubes will have no 
measurable effect on the concentration of the organocatalyst in bulk solution.

Carbon nanotube Pyramidalisation 
angle / o

Adsorption of 1 / mg 
(%)

Affinity / μmol mg-1

CoMoCAT SWNT 4.72 0.20 (1.2) 0.22
GNF 0.01 0.32 (1.9) 0.35
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S5. Assessing the solubility of carbon nanostructures in chloroform

Methodology

To carbon nanostructures (0.5 mg, CoMoCAT SWNT or GNF) was added chloroform (5 mL) 
and the combined suspension homogenised by bath sonication at room temperature for 30 
min. The suspension was then left to settle at room temperature for 4 hr with no agitation and 
the pale grey supernatant analysed by UV-vis spectroscopy and dynamic light scattering 
(DLS).

Fig. S5 UV-vis spectroscopy analysis of stable suspensions of (a) CoMoCAT SWNT and (b) GNF in 
chloroform. The optical density and thus concentration of stable suspensions of both CoMoCAT 
SWNT and GNF are both low (in the range 0.01-0.02 mg mL-1) and as such the reaction solvent is 
effectively saturated with carbon nanostructures in all experiments. The specific absorbance at the 
spectral maximum (and across the entire spectral range) is slightly higher for GNF (0.831) than for 
CoMoCAT SWNT (0.478) and indicates that GNF possess a slightly higher solubility in chloroform 
than CoMoCAT SWNT. This observation implies that solubility alone cannot account for the 
recorded difference in the properties of reactions performed in the presence of these carbon 
nanostructures, as the opposite behaviour would be expected. Dynamic light scattering analysis of 
stable suspensions of (c) CoMoCAT SWNT and (d) GNF in chloroform. The mean diameter of 
structures determined by DLS can be used to describe the bundling characteristics of carbon 
nanostructures in stable suspension [J. Nanosci. Nanotech., 2005, 5, 1045]. Mean bundle sizes of 
100.8±14.5nm and 224.7±18.0nm, corresponding to 50-500 (large bundle) and 2-3 (very small 
bundle) carbon nanostructures per bundle, for CoMoCAT SWNT and GNF respectively were 
recorded and implies that surface area effects can also be largely disregarded.



7

S6. The effect of carbon nanostructures on organocatalysis

Fig. S6 The relationship between conversion and selectivity for 3 in the absence (blue, y = -0.04 + 
1.38ex/22.91, R2 =0.99) and presence (red, y = -12.90 + 12.98ex/51.97, R2 =0.98) of carbon nanostructures. 
This plot clearly shows that whilst the addition of carbon nanotubes does not fundamentally change 
the relationship between conversion and selectivity for 3, i.e. selectivity for 3 remains exponentially 
dependent on conversion, the selectivity for 3 at any given conversion of reactants into total products 
is higher in the presence of carbon nanostructures. Thus is due to increases in the acidity of the 
carboxylic acid proton of proline upon association of the organocatalyst with the external surfaces of 
carbon nanostructures. 


