Supporting Information

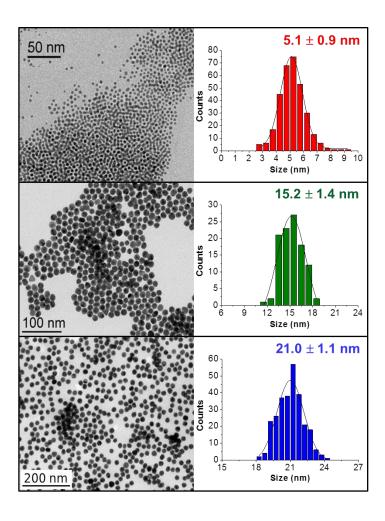
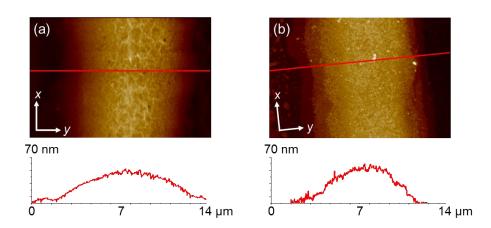
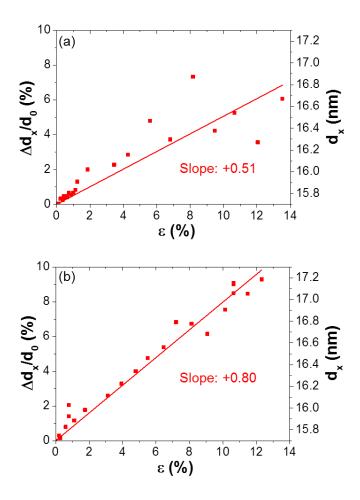
Small Angle X-ray Scattering Coupled With *in-situ* Electromechanical Probing of Nanoparticle-Based Resistive Strain Gauges

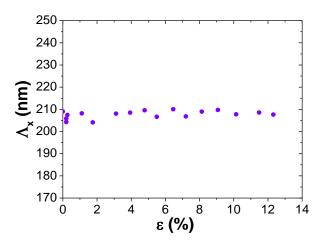
Nicolas Decorde,^a Neralagatta M. Sangeetha, ^a Benoit Viallet, ^a Guillaume Viau, ^a Jérémie Grisolia, ^a Alessandro Coati, ^b Alina Vlad, ^b Yves Garreau^{b,c} and Laurence Ressier *^a

^a Université de Toulouse, LPCNO, INSA-CNRS-UPS, 135 avenue de Rangueil, Toulouse 31077, France. Fax: +33561559697; Tel: +33561559672 *E-mail:laurence.ressier@insa-toulouse.fr

^b Synchroton SOLEIL, L'Orme des Merisiers Saint-Aubin - BP 48, Gif-sur-Yvette 91192, France.

^c Université Paris Diderot, Sorbonne Paris Cité, MPQ, UMR 7162 CNRS, Paris 75013, France.


Figure S1. TEM images and size histograms of TDSP-stabilized gold nanoparticles.

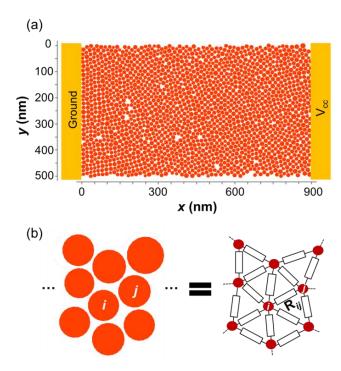

Figure S2. Top-view AFM images and associated cross-sections of wires made of (a) 5 nm and (b) 21 nm TDSP-stabilized nanoparticles on PET substrates.

Figure S3. Evolution of the relative NP center-to-center distance $\Delta d_x/d_0$ measured by GISAXS with respect to the strain ε applied along the x axis, for 15 nm NP-based strain gauges on (a) PET and (b) PI substrates.

Figure S4. Evolution of the correlation length Λ_x measured by SAXS with respect to the strain ε applied along the x axis, for a 15 nm NP-based strain gauge on PI substrate.

Figure S5. (a) Model hexagonally-packed assembly of gold nanoparticles with a mean diameter of 15 nm and a size dispersion of 10%, separated from each other by a distance of 0.8 nm at zero strain, (b) zoom-in of the hexagonally-packed assembly of gold nanoparticles presented in (a) and the associated resistor network, used for modeling.