1

Supporting Information

Multifunctional nanomesoporous materials with upconversion (*in vivo*) and downconversion (*in vitro*) luminescence imaging based on mesoporous capping UCNPs and linking lanthanide complexes

Lining Sun,*^a Xiaoqian Ge,^a Jinliang Liu,^a Yannan Qiu,^a Zuwu Wei,^a Bo Tian,^b Liyi Shi^{*a}

^a Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, P. R. China. E-mail: <u>lnsun@shu.edu.cn</u>; <u>shiliyi@shu.edu.cn</u>; Tel: +86-21-66137153

^b Department of Chemistry & Laboratory of Advanced Materials, Fudan University, 200433, China.

1. Synthesis of NaYF₄:Yb,Tm and NaYF₄:Yb,Tm@NaGdF₄ nanocrystals (NaYF₄:Yb,Tm@NaGdF₄ named as UCNPs)

In details, YCl₃ (1.56 mmol, 78%), YbCl₃ (0.4 mmol, 20%), and TmCl₃ (0.04 mmol, 2%) in deionized water were added to a 100 mL flask and the solution heating to 110 °C to evaporate water until the solution became white powder. Then, 12 mL OA and 30 mL ODE were added in. The mixture was heated to 150 °C to form a homogeneous transparent solution, and then cooled to room temperature. 20 mL methanol solution containing NaOH (0.2 g, 1.6 mmol) and NH₄F (0.3 g, 8 mmol) was added into the flask and stirred for a while at 100 °C. After methanol was evaporated, the solution was heated to 300 °C and kept for 1 h under argon atmosphere and then cooled to room temperature. The obtained mixture was precipitated by the addition of acetone, separated by centrifugation, washed with cyclohexane. The sample NaYF₄:Yb,Tm was redispersed in 20 mL cyclohexane.

For the synthesis of NaYF₄:Yb,Tm@NaGdF₄ nanocrystals, the process was similar with above method. 800 μ mol GdCl₃ water solution was added to a 100 mL flask, and then heated to 110 °C to evaporate the water. 12 mL oleic acid and 30 mL 1-octadecene were added in, when the solution became white powder. The mixture was heated to 150 °C to form a homogeneous transparent solution, and then cooled to room temperature. 5 mL pre-prepared NaYF₄:Yb,Tm was added to above mixture and kept for another 30 min before heated to 90 °C to remove cyclohexane. 1.25 mL methanol solution of NH₄F (0.039 g, 1.05 mmol) and NaOH (0.067 g, 1.68 mmol) was added and the solution was stirred at 100 °C for a while. After methanol was evaporated, the solution was heated to 300 °C and kept for 1 h under argon atmosphere and then cooled to room temperature. After centrifugation and washing, the final product was redispersed in 10 mL cyclohexane and denoted as UCNPs.

Synthesis of mesoporous SiO₂ coated UCNPs nanocomposite spheres (denoted as UCNPs@mSiO₂)

2 mL UCNPs cyclohexane solution (5 mg/mL) was mixed with 20 mL water and 0.1 g CTAB, the mixture was then stirred vigorously to evaporate the cyclohexane

solvent at room temperature, resulting in a transparent UCNPs/CTAB water solution (0.5 mg/mL). The excess amount of CTAB must be removed via decreasing the temperature to 0 °C and centrifuging. Then, 20 mL water, 3 mL ethanol and 150 μ L NaOH solution (2 M) were added in above 10 mL UCNPs/CTAB water solution, and then heated to 70°C. When the temperature was stable, 200 μ L TEOS was added dropwise and the reaction mixture was stirred for 2 h. The product was washed 3 times with ethanol and dispersed in 10 mL of ethanol. The template CTAB was removed by a fast and efficient ion exchange method. 90 mL ethanol solution containing 0.6 g of NH₄NO₃ was mixed with the as-synthesized UCNPs@mSiO₂ (10 mL) and kept at 60 °C for 2 h under stirring. The final product was washed with ethanol and redispersed in 10 mL of ethanol.

3. Synthesis of β-Diketonate-Functionalized Alkoxy-Silane (dbm-Si)

The dibenzoylmethane was dissolved in 40 mL dehydrate THF, and NaH was added (dibenzoylmethane/NaH = 1:2, molar ratio) with stirring. After 2 h, TEPIC was added the refluxing solution with a molar ratio of 1:1. The mixture was refluxed at 70 °C for 12 h under an argon atmosphere. Then, the solvent was distilled off under reduced pressure, yielding the alkoxysilane modified dibenzoylmethane: a yellow solid, named as dbm-Si.

4. Synthesis of Ln(dbm)₃(H₂O)₂ Complexes (Ln=Eu, Sm, Er, Nd, Yb)

A certain amount of Hdbm was dissolved in ethanol, and the pH value was adjusted to approximately 7 with an appropriate amount of sodium hydroxide solution (1 M). The LnCl₃ ethanol solution was added into this mixture under stirring (LnCl₃:dbm = 1:3, molar ratio). Then an appropriate amount of water was added. The mixture was heated to 85 °C and refluxed for 6 h, then cooled to room temperature. The precipitates were collected by filtration, washed with water and ethanol, and dried at 50 °C.

Fig. S1. The XRD patterns of NaYF₄:Yb,Tm, UCNPs, UCNPs@mSiO₂, UCNPs@mSiO₂-Eu(dbm)₄, and the standard card of β -NaYF₄ (JCPDS: 16-0334).

Fig. S2. energy dispersive X-ray (EDX) spectrum of UCNPs@mSiO₂-Eu(dbm)₄.

Fig. S3. The low-angle XRD patterns of UCNPs@mSiO₂, and UCNPs@mSiO₂-Eu(dbm)₄.

Fig. S4. N2 adsorption-desorption isotherms of UCNP@mSiO2 and UCNP@mSiO2-Eu(dbm)4.

Fig. S5. The pore size distribution of UCNPs@mSiO₂ and UCNPs@mSiO₂-Eu(dbm)₄.

Fig. S6. FT-IR spectra of the UCNPs (a); UCNPs@mSiO₂ (b); UCNPs@mSiO₂-dbm (c); UCNPs@mSiO₂-Eu(dbm)₄ (d).

Fig. S7. FTIR spectra of the UCNPs@mSiO₂-Sm(dbm)₄ (a); UCNPs@mSiO₂-Er(dbm)₄ (b); UCNPs@mSiO₂-Nd(dbm)₄ (c); UCNPs@mSiO₂-Yb(dbm)₄ (d).

Fig. S8. Upconversion luminescence spectra of UCNPs@mSiO₂-Sm(dbm)₄, UCNPs@mSiO₂-Er(dbm)₄, UCNPs@mSiO₂-Nd(dbm)₄, and UCNPs@mSiO₂-Yb(dbm)₄.

Fig. S9. Visible emission ($\lambda_{ex} = 401 \text{ nm}$) spectrum (a) and NIR emission ($\lambda_{ex} = 401 \text{ nm}$) spectrum (b) of UCNPs@mSiO₂-Sm(dbm)₄. The visible and NIR emissions both come from the ${}^{4}G_{5/2}$ excited state.

Fig. S10. Bright-field photos and phosphorescence photos of UCNPs@mSiO₂-Eu(dbm)₄ under blue LED illumination (peak at 405 nm) in pure water, PBS and RPMI 1640 culture solution.

Fig. S11. The emission spectra of UCNPs@mSiO₂-Eu(dbm)₄ in water as a function of time (inset, time-dependent luminescence at 613 nm), $\lambda_{ex} = 405$ nm.