## Supporting Information

## Nitrogen and Sulfur Co-doped Carbon Dots with Strong Blue

## Luminescence

Hui Ding, Ji-Shi Wei, Huan-Ming Xiong\*

Department of Chemistry, Fudan University, Shanghai 200433, P. R. China E-mail: <u>hmxiong@fudan.edu.cn</u>

**Materials.** NaOH, NaBH<sub>4</sub>, Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>, Zn(AC)<sub>2</sub>·2H<sub>2</sub>O, SnCl<sub>4</sub>·5H<sub>2</sub>O, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, Cu(NO<sub>3</sub>)<sub>2</sub>, Ba(AC)<sub>2</sub>, FeCl<sub>3</sub>·6H<sub>2</sub>O, MgSO<sub>4</sub>, Co(AC)<sub>2</sub>·4H<sub>2</sub>O, FeSO<sub>4</sub>·7H<sub>2</sub>O, CaCl<sub>2</sub>, Pb(NO<sub>3</sub>)<sub>2</sub>,  $\alpha$ -lipoic acid and ethylenediamine were purchased from Sinopharm Chemical Reagent Co., Ltd (China). 3-cyclopentylpropionic acid was purchased from J&K Tech. Ltd (Beijing, China). Dulbecco's Modified Eagle's medium (DMEM, High Glucose), fetal bovine serum (FBS), and trypsinase were obtained from GIBCOBRL (New York, USA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were obtained from Sigma Aldrich (USA). All chemical reagents were used as received without any further purification. Ultrapure water (Milli-Q water) was used in all experiments.

**Instruments and characterizations.** A JEM-2010 transmission electron microscope operating at 200 kV was employed to obtain high resolution transmission electron microscopy (HRTEM) images. Fluorescence spectra were recorded using a Horiba JobinYvon fluormax-4 spectrofluorometer equipped with a HORIB F-3004 sample heater/cooler Peltier thermocouple drive and an F-3018 quantum yield accessory including an integrating sphere. The UV-Vis absorption spectra were measured on a Unico UV-2802 PC spectrometer. Fourier transform infrared (FTIR) spectra were recorded on a Nicolet Nexus 470 FTIR spectrometer. The Raman spectra were recorded by a LabRam-1B microRaman spectrometer (excitation wavelength: 638.2 nm). The crystal structure of two CDs were characterized by a Bruker D8 Advance X-ray diffractometer ( $\lambda$ = 0.154056 nm). X-ray Photoelectron Spectroscopy (XPS) was recorded by a Perkin Elmer PHI5000C spectrometer. The time-resolved fluorospectroscopy of the sample was measured by FLS 920 spectrometer. The time-resolved transient fluorescence spectra were measured on a PTI QM 40 fluorescence lifetime spectrometer.

## Principles of integrating sphere.

The detailed principles of integrating sphere are described below. When sample is placed in the integrating sphere and excited with a monochromatic light of wavelength  $\lambda$ , the film absorbance, *A*, is calculated by

$$A = \frac{L_b - L_c}{L_b} \tag{1}$$

Where  $L_b$  is the integrated excitation profile when the sample is diffusely illuminated by the integrating sphere's surface; and  $L_c$  is the integrated excitation profile when the sample is directly excited by the incident beam.

The quantum yield,  $\Phi$ , is by definition photons emitted to photons absorbed:

$$\Phi = \frac{E_c - (1 - A) \cdot E_b}{L_a \cdot A} = \frac{E_c - E_a}{L_a - L_c}$$
(2)

Where  $E_c$  is the integrated luminescence of the film caused by direct excitation, and  $E_b$  is the integrated luminescence of the film caused by indirect illumination from the sphere. The term  $L_a$  is the integrated excitation profile from an empty integrating sphere (without the sample, only a blank). Here  $E_a$  is the integrated luminescence from an empty integrating sphere (only a blank).

For integration of function *L* over the wavelength,  $\lambda$ , the integration limits can be from 10 nm below the excitation wavelength to 10 nm above the excitation wavelength.



Scheme S1. Synthetic routes for S-CDs and N,S-CDs derived from α-lipoic acid.



Scheme S2. Synthetic route for N-CDs derived from 3-cyclopentylpropionic acid.



Figure S1. Size distribution histograms of the obtained (a) S-CDs and (b) N,S-CDs.



Figure S2. XRD patterns of the S-CDs and N,S-CDs.



Figure S3. Raman spectra of the S-CDs and N,S-CDs.



**Figure S4.** (a) XPS spectra of the as-prepared S-CDs. (b-d) High-resolution XPS data of C1s, N1s and S2p of S-CDs.



**Figure S5.** UV-visible absorption spectra of S-CDs respectively obtained at 250°C for 1, 3, 7, 11, 15 and 19h.



Figure S6. PL spectra of S-CDs obtained at 250°C for 1, 3, 7, 11, 15 and 19 h

respectively. Each sample was excited by different wavelength of light.



Figure S7. UV-visible spectra of N,S-CDs respectively obtained at 250°C for 1, 3, 7,



**Figure S8.** PL spectra of N,S-CDs obtained at 250°C for 1, 3, 7, 11, 15 and 19 h respectively. Each sample was excited by different wavelength of light respectively.



**Figure S9.** The normalized emission spectra of the maximal PL emission for N,S-CDs synthesized at 250°C for different time.



Figure S10. Quantum yield evolutions for CDs after different reaction time.



Figure S11. The relationship of quantum yield for N,S-CDs and their nitrogen

contents.



**Figure S12.** The fluorescence decay curve of S-CDs. The excitation and emission wavelengths are 370 and 452 nm, respectively.



**Figure S13.** The red curve is the steady-state PL emission spectra of N,S-CDs excited by 370 nm light and collected by a Horiba JobinYvon fluormax-4 spectrofluorometer. The black curve is obtained by recording the transient fluorescence emission spectra of N,S-CDs excited by 368 nm light, corresponding to the  $\tau 2$  of 6.54 ns, since the  $\tau 1$  of 1.79 ns has passed away (see Table S3), which is recorded by a PTI QM40 fluorescence lifetime spectrometer. This result confirms that the PL emission of N,S-CDs is mainly from the luminescent process which has the lifetime of  $\tau 2$ .



Figure S14. TEM image of the obtained N-CDs.



Figure S15. UV-vis absorption spectra and PL emission of N-CDs excited by different wavelength of light.



Figure S16. UV-Vis absorption spectra of N-CDs and N,S-CDs.



**Figure S17.** UV-Vis absorption spectra of N-CDs synthesized at 250°C for 1, 3, 7, 11, 15, and 19 h respectively.



Figure S18. PL spectra of N-CDs obtained at 250°C for 1, 3, 7, 11, 15 and 19h

respectively under different wavelength of excitation light.



**Figure S19.** The UV-Vis spectra of the N,S-CDs mixed with different concentrations of Fe<sup>3+</sup> in water. The absorption background of each sample is the solution containing the same concentration of Fe<sup>3+</sup> ions. (The concentration of Fe<sup>3+</sup> is 0, 25, 50, 75, 100, 125, 150, 200, 300, 400  $\mu$ M, from top to down).

Compared with S-CDs, the most interesting finding is the observation of a new absorption peak at 270 nm in N-CDs and N,S-CDs, which may be a label to disclose the emission mechanism of CDs. In Figure S19, a decrease of absorption at 320 nm was observed upon the addition of  $Fe^{3+}$  ions, which could be attributed to the combination of  $Fe^{3+}$  ions with functional groups on the surface of N,S-CDs to form complex of N,S-CDs/Fe<sup>3+</sup>. Meanwhile, the absorption peak at 270 nm shows almost no changes when more and more  $Fe^{3+}$  ions are added. The results indicates that the coordination between the C=O groups and  $Fe^{3+}$  ions decreases the C=O absorption at about 320 nm, but it does not influence the C=N bands at 270 nm which are inside the CD cores. However, we think this result is not very accurate because the absorption of  $Fe^{3+}$  ions themselves, which was used as the background to obtain Figure S19, will change actually when N,S-CDs/Fe<sup>3+</sup> complex forms.



**Figure S20.** (a-c) Effect of pH, ionic strength and UV irradiation on the fluorescence intensity of N,S-CDs, respectively. (d) Fluorescence spectra of fresh N,S-CDs and N,S-CDs after two months of storage. All the concentrations of N,S-CDs are 100  $\mu$ g/ml. The fluorescence intensities are recorded at 472 nm.



Figure S21. Cytotoxicity of the N,S-CDs toward HeLa cells from an MTT assay.

| Sample      | Reaction | С      | 0      | Ν      | S      | Quantum   |
|-------------|----------|--------|--------|--------|--------|-----------|
|             | Time (h) | (wt %) | (wt %) | (wt %) | (wt %) | Yield (%) |
| N,S-CDs-1h  | 1        | 75.36  | 19.67  | 0.71   | 0.82   | 6.54      |
| N,S-CDs-3h  | 3        | 76.36  | 19.54  | 0.82   | 0.56   | 8.52      |
| N,S-CDs-7h  | 7        | 74.89  | 18.78  | 1.20   | 0.38   | 16.28     |
| N,S-CDs-11h | 11       | 74.46  | 18.68  | 1.43   | 0.47   | 25.87     |
| N,S-CDs-15h | 15       | 73.64  | 18.35  | 2.60   | 1.15   | 54.28     |
| N,S-CDs-19h | 19       | 73.17  | 18.15  | 2.63   | 1.20   | 54.41     |

**Table S1.** The C, O, N and S contents of N,S-CDs synthesized at different reaction conditions.

Table S2. XPS data analyses of C1s in N,S-CDs after reaction for different time.

| Sample      | C-C (284.5 eV)<br>(%) | C-S (285.3 eV)<br>(%) | C-N (286 eV)<br>(%) | C-O (286.5 eV)<br>(%) | C=O/C=N(288.2 eV)<br>(%) |
|-------------|-----------------------|-----------------------|---------------------|-----------------------|--------------------------|
| N,S-CDs-1h  | 71.33                 | 10.37                 | 1.26                | 11.30                 | 5.74                     |
| N,S-CDs-3h  | 70.54                 | 10.62                 | 2.15                | 10.46                 | 6.23                     |
| N,S-CDs-7h  | 69.72                 | 10.19                 | 2.62                | 9.59                  | 7.88                     |
| N,S-CDs-11h | 69.34                 | 8.76                  | 3.09                | 10.27                 | 8.54                     |
| N,S-CDs-15h | 68.29                 | 4.80                  | 4.31                | 13.56                 | 9.04                     |
| N,S-CDs-19h | 67.54                 | 4.70                  | 4.18                | 14.47                 | 9.11                     |

**Table S3.** Lifetime calculations from the time-resolved decay profiles of S-CDs and N,S-CDs.

| Sample      | $\lambda_{	ext{ex}}$ (nm) | λ <sub>em</sub><br>(nm) | τ <sub>1</sub><br>(ns) | Percentage<br>(%) | T2<br>(ns) | Percentage<br>(%) | Ave.T<br>(ns) | χ²    |
|-------------|---------------------------|-------------------------|------------------------|-------------------|------------|-------------------|---------------|-------|
| S-CDs       | 370                       | 452                     | 1.49                   | 43.31             | 5.63       | 56.69             | 3.84          | 1.008 |
| N,S-CDs-1h  | 390                       | 472                     | 2.10                   | 39.40             | 6.91       | 60.60             | 5.01          | 1.003 |
| N,S-CDs-3h  | 390                       | 472                     | 2.25                   | 31.92             | 6.43       | 68.08             | 5.10          | 1.021 |
| N,S-CDs-7h  | 390                       | 472                     | 1.94                   | 20.43             | 6.72       | 79.57             | 5.74          | 1.050 |
| N,S-CDs-11h | 390                       | 472                     | 2.64                   | 12.51             | 6.28       | 87.49             | 5.82          | 1.033 |
| N,S-CDs-15h | 390                       | 472                     | 1.95                   | 9.62              | 6.63       | 90.38             | 6.18          | 0.991 |
| N,S-CDs-19h | 390                       | 472                     | 1.79                   | 8.49              | 6.54       | 91.51             | 6.14          | 0.992 |