Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2014

Supporting information

Indirect Growth of Mesoporous Bi@C Core-shell Nanowires for Enhanced Lithium-Ion Storage

Rui Dai, Yuhang Wang, Peimei Da, Hao Wu, Ming Xu and Gengfeng Zheng*

Address: Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai,

200433, People's Republic of China

E-mail: gfzheng@fudan.edu.cn

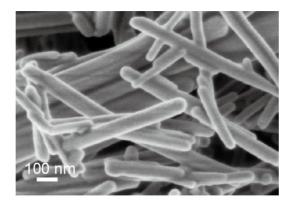


Fig. S1 SEM images of Bi₂S₃@GCP nanowires before calcination.

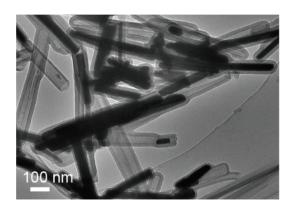
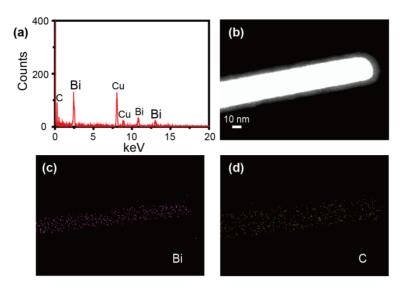
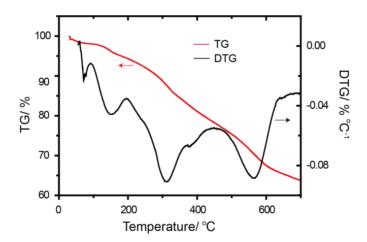
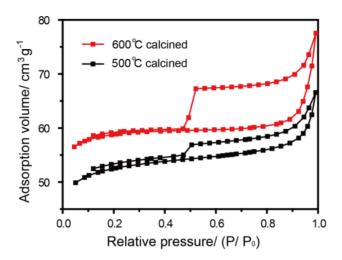
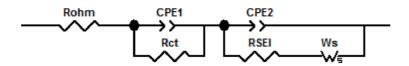




Fig. S2 TEM images of Bi@C core-shell NWs exhibiting a relatively larger area.

Fig. S3 (a) EDX spectrum of Bi@C core-shell nanowires; (b) STEM image of Bi@C core-shell nanowires; (c, d) Corresponding elemental maping of Bi and C elements in Bi@C core-shell nanowires, respectively.

 $\textbf{Fig. S4} \ Thermogravimetric \ results \ of \ Bi_2S_3@GCP \ nanowires \ under \ N_2 \ atmosphere.$

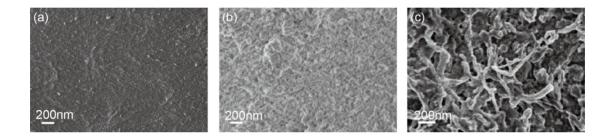

Fig. S5 N_2 sorption isotherms of the $Bi_2S_3@GCP$ nanowires calcined at 500 and 600 °C, respectively.

Fig. S6 SEM images of commercial Bi microparticles.

Fig. S7 Equivalent circuit model. R_{ohm} denotes the internal resistance of the test cell. R_{ct} is related to the charge-transfer resistance. R_{SEI} represents the interphase resistance. CPE represents the constant phase element. W_s represents the Warburg impedance.

Fig. S8 SEM images of electrodes fabricated from (a) commercial Bi microparticles, (b) Bi₂S₃@C coreshell nanowires, and (c) Bi@C core-shell nanowires collected after 10 charge/discharge cycles.