DOI: 10.1039/b00000x/

Electronic Supplementary Information (ESI)

Electrical conduction of nanoparticle monolayer for accurate tracking

of mechanical stimulus in finger touch sensing

Weihong Jiao^{a, =}, Lizhi Yi^{a, =}, Chao Zhang^a, Ke Wu^a, Juan Li^a, Lihua Qian^{*, a}, Shuai Wang^{*, b}, Yingtao Jiang^c, Biswajit Das^c, and Songliu Yuan^{*, a} a School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
b School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
c Nevada Nanotechnology Center & Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, Nevada 89154-4026, USA

Supplementary materials include:

- 1. Scanning electron microscopy images of nanoparticle monolayer and single nanoparticle;
- 2. Statistical analysis of size distribution for gold nanoparticles;
- 3. The optical photo to illustrate experimental configurations during electrical property measurement.

Fig. S1: The SEM images of gold nanoparticles. (a) Most gaps between gold nanoparticles are below 3 nm. (b) The magnified SEM image of single gold nanoparticle indicates the nearly spherical shape.

Fig. S2: Statistical analysis of size distribution for gold nanoparticles. The average particle size is estimated as ~50 nm.

Fig. S3: The optical photo to illustrate experimental configurations during electrical property measurement. The nanoparticle strip is assembled onto the center of transparent PET film.