
Supplementary Information for

Phototransistor Based on Single In₂Se₃ Nanosheet

Qin-Liang Li, Chang-Hai Liu, Yu-Ting Nie, Wen-Hua Chen, Xu Gao, Xu-Hui Sun* and Sui-Dong Wang*

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China

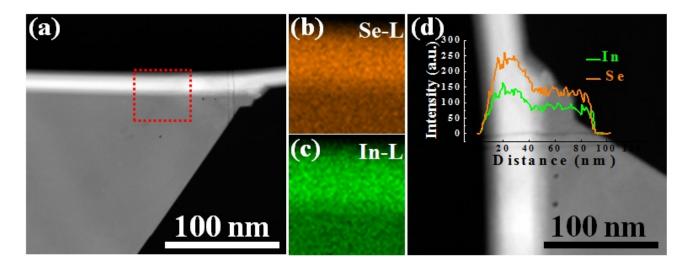

*E-mail: wangsd@suda.edu.cn; xhsun@suda.edu.cn


Fig. S1 (a, b, c, d) SEM images of typical micrometer-sized In_2Se_3 nanosheets. (e) TEM-EDX spectrum of single In_2Se_3 nanosheet, where Cu signal is from TEM grid.

Crystal Plane	Scherrer Size (nm)
(002)	119
(004)	103
(101)	127
(102)	165
(104)	145
(008)	136
(110)	104
(0010)	122
(205)	207

Table S1 Scherrer sizes of In₂Se₃ nanosheets derived from XRD pattern in Fig. 1(b).

Fig. S2 (a) STEM image of an In_2Se_3 nanosheet epitaxially grown from an In_2Se_3 nanowire, showing spatially resolved EDX elemental mapping for (b) Se and (c) In of the selected area depicted in (a). (d) EDX line profiles for Se and In of the In_2Se_3 nanosheet.

Fig. S3 (a) Statistics in thickness of In_2Se_3 nanosheets. (b) AFM image of single In_2Se_3 nanosheet. (c) Cross-sectional line profile of the In_2Se_3 nanosheet shown in (b).

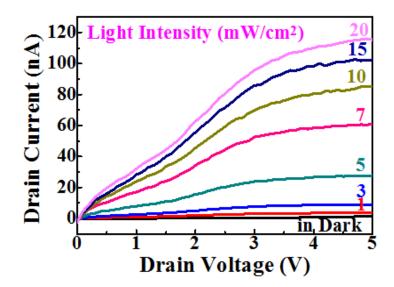


Fig. S4 Photoresponse of an In_2Se_3 nanosheet phototransistor at $V_{GS} = 0$ V, where incident light intensity is from 1 mW/cm² to 20 mW/cm².