## **Supporting Information**

# Layer-Controlled CVD Growth of Large-Area Two-Dimensional MoS<sub>2</sub> Films

Jaeho Jeon<sup>a</sup>, Sung Kyu Jang<sup>a</sup>, Su Min Jeon<sup>a</sup>, Gwangwe Yoo<sup>b</sup>, Jin-Hong Park<sup>b</sup>\*, and Sungjoo Lee<sup>a,b,c</sup>\*

<sup>a</sup> SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 440-746, Korea.

<sup>b</sup> School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746, Korea.

<sup>c</sup> Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon 440-746, Korea.

\*Corresponding Authors: jhpark9@skku.edu and leesj@skku.edu

#### **Surface Treatment**

Before the LPCVD process, 300 nm thick  $SiO_2/Si$  substrates were cleaned with acetone, IPA, and DI water with 15 min ultra-sonication and treated with oxygen plasma by using RIE equipment at 60 W and with 5 sccm  $O_2$ . The effects of the oxygen plasma treatments on the  $SiO_2$ surfaces were examined with XPS (X-ray photoelectron spectroscopy) and by performing contact angle measurements. We examined the effects of the oxygen plasma on the  $SiO_2$  surfaces with XPS. Figures S1a and b show the O1s XPS spectra of a bare  $SiO_2$  substrate (Figure S1a) and of a  $SiO_2$  substrate treated with oxygen plasma for 300 s (Figure S1b).



**Figure S1.** XPS measurement with different surface treatment conditions on  $SiO_2/Si$  substrate : (a) Si 2p XPS spectra with bare, 90 , 120, 300 sec oxygen plasma treatment on  $SiO_2$  surface, (b) O 1s XPS spectra with bate, 90, 120, 300 sec oxygen plasma treatment on  $SiO_2$  surface.

Figure S2 shows images of water droplets on the bare and treated substrates. The contact angle on the bare  $SiO_2$  substrate is 24.5° (Figure S2a), whereas contact angles less than 1° were found for the plasma-treated  $SiO_2$  substrates (Figures S2b, c, and d), which shows that the  $SiO_2$  substrates become more hydrophilic as the plasma-treatment time increases.



**Figure S2.** Images of water droplets on SiO<sub>2</sub>/Si substrates. (a) Bare SiO<sub>2</sub>, and after plasma treatments of various durations: (b) 90 s, (c) 120 s, and (d) 300 s.

#### Low Pressure CVD synthesis tool

The growth of the MoS<sub>2</sub> films was carried out in a LPCVD furnace, as shown in Figure S3a. Before the synthesis, MoO<sub>3</sub> powder was placed in the center of the heating zone and sulfur powder was placed 30 cm away from the MoO<sub>3</sub> powder. When the temperature of the CVD system reaches 850 °C, the temperatures of the MoO<sub>3</sub> and sulfur positions rise to 790 °C and 210 °C, respectively (Figure S3b).



Figure S3. (a) Schematic diagram of the  $MoS_2$  CVD growth system. (b) Variation of the temperature inside the quartz tube with the distance from the center of the heating zone.

### Comparison of MoS<sub>2</sub> films grown on bare and plasma-treated SiO<sub>2</sub> substrates

Figure S4 shows SEM images of MoS<sub>2</sub> films grown on a bare SiO<sub>2</sub> substrate (a) and a SiO<sub>2</sub> substrate treated with oxygen plasma for 90 s (b). In the SEM images, the bright white areas are the SiO<sub>2</sub> substrates and the dark black areas are MoS<sub>2</sub>. In (a), small triangular discontinuous MoS<sub>2</sub> grains are evident, whereas in (b) a continuous full-coverage MoS<sub>2</sub> film is present. Figures S4c and d show the Raman and PL spectra of these samples. The differences between the  $A_{g}^{1}$  and  $E_{2g}^{1}$  peak centers are the same (19.6 cm<sup>-1</sup> ~ 20.6 cm<sup>-1</sup>) for both samples, indicating that monolayer MoS<sub>2</sub> films are present on both substrates. However, the MoS<sub>2</sub> on the plasma-treated substrate exhibits much higher Raman and PL intensities.



**Figure S4.** (a) SEM image of  $MoS_2$  grown on a bare SiO<sub>2</sub> substrate. (b) SEM image of  $MoS_2$  grown on a SiO<sub>2</sub> substrate treated with oxygen plasma for 90 s. (c) Raman measurements for the  $A_{g}^{1}$  and  $E_{2g}^{1}$  peaks of (a) and (b). (d) PL measurements for (a) and (b).

#### **Chemical configuration**

The chemical configurations of the MoS<sub>2</sub> films were studied by performing XPS analysis. In theory, MoS<sub>2</sub> can have two different lattice structures. One thermodynamically stable form of MoS<sub>2</sub> is the trigonal prismatic 2-H structure in which each molybdenum atom is prismatically coordinated by six surrounding sulfur atoms; the 1-T structure of MoS<sub>2</sub> is reached by a phase transition in which the coordination of the Mo atoms becomes octahedral. These two forms of MoS<sub>2</sub> have different properties: 2-H MoS<sub>2</sub> exhibits semiconducting behavior and 1-T MoS<sub>2</sub> is metallic.<sup>1, 2</sup> Figures S4a and b show the Mo 3d and S 2p spectra of a monolayer MoS<sub>2</sub> film. The Mo 3d peak positions are at binding energies of 229 and 232 eV and the S 2p peak positions are at binding energies of 161.8 and 162.9 eV, which are due to a 2H-MoS<sub>2</sub> crystal structure with Mo 3d<sub>5/2</sub> and 3d<sub>3/2</sub> orbitals and S 2p<sub>1/2</sub> and 2p<sub>3/2</sub> orbitals respectively.<sup>3</sup> These measurements match the characteristic band spectral positions of perfectly synthesized 2H-MoS<sub>2</sub> layers.<sup>3</sup> In addition, similar Mo 3d spectra (Figure S5c) and S 2p spectra (Figure S5d) were obtained for the trilayer MoS<sub>2</sub> film, which indicates that the trilayer MoS<sub>2</sub> film also has a 2-H crystal structure.



Figure S5. (a) Mo 3d and (b) S 2d XPS spectra for a monolayer  $MoS_2$  film. (c) Mo 3d and (d) S 2d XPS spectra for a trilayer  $MoS_2$  film.



Figure S6.  $MoS_2$  FET  $I_d - V_d$  curves at various  $V_g$  (10 V ~ 60 V) for (a) monolayer  $MoS_2$ , (b) bilayer  $MoS_2$ , and (c) trilayer  $MoS_2$ .



Figure S7. SEM image of the CVD-grown MoS<sub>2</sub> film on the 30 s oxygen plasma treated SiO<sub>2</sub> surface.



**Figure S8.** OM images of the CVD-grown  $MoS_2$  films on the (a) 100 s and (b) 180 s oxygen plasma treated  $SiO_2$  surface, and corresponding Raman mapping images of the CVD-grown  $MoS_2$  films on the (C) 100 s and (d) 180 s oxygen plasma treated  $SiO_2$  surface



**Figure S9.** (a) OM image of the CVD-grown  $MoS_2$  film on the 450 s oxygen plasma treated  $SiO_2$  surface. (b) Statistical histogram of the  $E^{1}_{2g}$  to  $A^{1}_{g}$  peak distances and corresponding Raman mapping image of the CVD-grown  $MoS_2$  film on the 450 s oxygen plasma treated  $SiO_2$  surface.

#### REFERENCES

- 1 C. Ataca, H. Sahin, S. Ciraci, J Phys Chem C 2012, 116, 8983-8999.
- 2 C. A. Papageorgopoulos, W. Jaegermann, Surf Sci 1995, 338, 83-93.
- G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. W. Chen, M. Chhowalla, Nano Lett 2011, 11, 5111-5116.