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S1. The Langevin Simulation Method  

 
The Langevin method used to simulate the motion of the IW motor is formally identical to 
that used by Kuwada et al.1. Let Δxi

(j) be the change in the value of the ith coordinate of the jth 
monomer of the polymer over an incremental time, Δt, at time t. Here i (=1 to 3) are 3D 
coordinate indices and j= 1,2,…,N are the monomer indices for the polymer. The Langevin 
equation can then be written: 
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In equation (S1), Fi

(j) is the ith component of the sum of both internal and external 
conservative forces on the jth monomer at time t. The value for the drag coefficient for each 
monomer, γ, is given by  
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γ =
kBT
D           (S2)

  
Here D is the monomeric diffusion constant estimated to be D = 3.3x10-11 m2 s-1 23. 
 ζi

(j) is a random number taken from a Gaussian distribution with zero mean and variance 
<ζi

(j)(t) ζi
(j’)(t’)> = δii’δjj’ δ(t - t’). Fi

(j) is the sum of a conservative force and an external force, 
FM, and is given by: 
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j( ) +FMδ i1         (S3) 
 
Here j=1 is the direction of the axis of the cylindrical nano-channel.

  
The conservative force, FCi

(j), acts on each monomer and is the negative gradient of the 
following potential: 
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V =WH +WSB +WLJ +WBE        (S4)
  

WH is a harmonic potential, which fixes the length of the bonds between the monomers of the 
polymer and is given by: 
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VH
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rj+1 − rj − lB( )
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Here rj is the position vector for monomer j (j = 1 to N) and lB is the bond length. The specific 
binding potential, WSB, for binding of a DNA recognition sequence monomer to a repressor 
protein on the nanochannel wall is given by:  
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Here VSB is the coupling constant of the specific binding interaction, η is its effective range 
and rj is the distance between repressor j and the nearest corresponding dsDNA recognition 
sequence on the track.  
The excluded volume between two distant monomers is simulated by a repulsive Lennard-
Jones (LJ) interaction, WLJ , given by: 
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Here VLJ is the strength of the LJ interaction, σ is the minimum distance between the centers 
of two spherical monomers and rij is the actual distance between them. WBE is the above-
mentioned bending energy potential given by: 
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WBE =VΘ cosθ j, j+1 − cosθ 0[ ]j=1,N−1∑
2

     (S8) 

 
Here θj,j+1 is the angle between the jth and j+1th polymer bonds (j=1,…,N-1) and θ0 is taken 
to be π. The value of VΘ then controls the elongation of the polymer in the nanochannel. The 
value of the effective range, η, of the specific binding potential of equation (S6) was taken to 
be 3.45 nm and the value of the lattice constant, bR, for the square lattice of repressors used in 
the simulations was 8 nm. Other parameter values are given in Table S 1. 
 
The dimensionless Langevin equation used in the simulations is written as follows:  
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Δξ j
j( ) =Φ i

j( )Δτ + 2Δτ( )
1
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Here ξ, τ and Φ are the dimensionless monomer coordinates, dimensionless force and 
dimensionless time, respectively, and are given by: 
 

       (S10)
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The scaling quantities t0 and F0   are given by: 
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t0 =
γx0

2

kBT
; F0 =

kBT
x 0

        (S11)
  

In our simulations, x0= 50 nm and from equation (S11) and Table S1, the values for t0 and F0 
used in our simulations are t0 = 0.287 ms and F0 = 0.082 pN.  
 
Table S 1 
 Symbol Value 
Temperature  kBT 4.1 pN nm      
Drag Coefficient  γ 1.3x10-10 kg s-1 
Polymer Bond Length  lB 100 nm 
Number of monomers  N 81 
Harmonic Bond Potential 
Coupling Constant 

 VH 1.025 pJ nm2 

Lennard-Jones Distance  σ 100 nm 
Lennard-Jones Interaction  VLJ 16.4 pN nm 
Lattice Constant  bR  8 nm 
Binding Site Density  ρ 7800 µm-2 
Specific Binding Interaction  VSB 8.2x102 pN nm 
Effective Range of the  
Specific Binding Interaction 

 η  3.45 nm 

Elongation Bending Energy  VΘ  82 pN nm 
Langevin Dynamics Time Step  Δt 0.388 ns 
 
The reasons for the choice of some of the parameter values in Table S1 are as follows: 

(a) The bond length of the polymer, lB, is essentially the Kuhn length of dsDNA and is 
given by twice the related persistence length (50 nm at high salt). 
(b) The coupling constant of the Harmonic Bond Potential, VH, was chosen to be 
sufficiently large to ensure that the bond length is practically constant. 
(c) The Lennard-Jones distance, σ, defines the excluded volume of the monomers and 
the value used is the same as in the polymer model for dsDNA of 2.The chosen value 
for σ makes the polymer chain into a self-avoiding walk (SAW) as it prevents the 
chain from self-interacting. 
(d) The coupling constant of the Lennard-Jones interaction, VLJ, has the standard value 
of 4kBT used in polymer simulations (see 2). 
(h) The time step, Δt, was chosen to be small enough to ensure that the simulation 
results were independent of its value. 
(e) The choice of 8 nm for the lattice constant of the square lattice of binding sites on 
the cylindrical nanochannel wall, bR, gives a binding site density of 15,575 µm-2. The 
lattice is then randomly filled with 49.92% vacancies and 50.08% binding sites which 
are evenly and randomly distributed between A and B repressors respectively. This 
gives a density, ρ, of 7,800 µm-2, which is the estimate for the maximum achievable 
experimental repressor density based on the typical physical dimensions of proteins. 
(f) The coupling constant for the specific binding interaction, VSB, was chosen to be 
large enough to achieve binding of the end monomers of the polymer to the binding 
sites on the nanochannel walls that was sufficiently strong so as not to break due to 
thermal fluctuations in the simulations. 
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(g) The effective range of the specific binding interaction, η, was chosen to be 
3.45 nm which is less than half of the repressor lattice constant. The binding sites 
therefore do not overlap and a given repressor can only bind to one binding site at a 
time. 
(h) The elongation bending energy, VΘ, was chosen to be large enough to reach the 
lower values of the experimentally applied ionic strength for dsDNA (see main text). 
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Figure S1. Brownian dynamics simulations results. Position, x, of the front (Yellow), Center 
(Pink), and Rear (Blue) of the DNA vs. time where rearward force is incrementally increasing 
by steps of 118 fN every 1.3 s. This shows the continuous data for the rearward force 
simulations, also shown in Figure 2D.  
 
S2. IW Stall Force Predicted from DNA Spring Constant 

Our modeling results indicate that IW stalling occurs as a consequence of competition 
between salt-induced contraction and extension of the DNA, and the counteracting extension 
and compression due to a load force, in States II and IV, respectively. Based on this 
consideration, we estimate IW’s stall force from IW’s spring constant (which counteracts 
load-force induced extension and compression). 
 
We thus assume that stalling occurs in the model when the rearward force is sufficiently large 
to induce a length change ∆L equal to that induced by salt changes. 
 
In the model, the total rearward force F is the sum of all forces applied to each monomer.  To 
calculate the resulting extension we integrate over the DNA’s extensions due to each partial 
force (F/L)dl applied to each segment dl, where we take l to be the coordinate along the 
contour of the polymer.   
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Knowing that the spring constant of a polymer is inversely proportional to the total length 4, 
we can find the effective spring constant as a function of the force’s attachment point l as  
 

€ 

κ l =κ
L
l ,          (S12) 

 
where κ is the spring constant of the entire polymer. Using Hooke’s law we can then write the 
total change in length as 
 

        (S13) 

 
Stalling occurs when F = Fstall is sufficiently large such that the resulting ∆L equals that 
induced by salt changes (0.7 µm in our model). Thus, based on these considerations, we 
predict Fstall = 2κ∆L = 0.23 pN for ∆L = 0.7 µm and κ = 0.16 pN µm-1. 
 
 
S3. Calculating Switching Times 

We define switching times, ts, from the raw data sets of intensity vs. time (example shown in 
Figure 5 of the main text) as the time to go from 80% to 20% of the fluorescence intensity 
measured. To determine ts we used seven switching events, and in each dataset we used a 
moving average of seven data points to reduce noise, rounding the relative intensity values to 
the nearest 0.001. 
 

S4. Analytical Expression Derivation 

When the pressure across the nanochannels is zero, in force-free mode, we find the 
concentration profile by solving Fick’s law,  
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with the following boundary conditions, initial condition and equilibrium condition: 

Boundary Conditions:   
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Initial Condition:   
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Equilibrium Condition:  
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The equilibrium profile is shown in Figure 7. We define the concentrations as the sum of the 
final concentration profile and a perturbation from equilibrium, ∆C, 
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C xNC,t( ) =C eq xNC( ) +ΔC xNC,t( )         (S15) 
 
and substitute equation (S15) into equation (S14)  
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Then solve for ∆C dependence on position and time 
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We use this result to find the final concentration dependence on position and time 
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The concentration profile when there is a pressure drop across the nanochannels, in constant-
force mode, was found in 5 to be 
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S5. Microfluidic simulations 

The COMSOL multiphysics simulation of the full microfluidics used experimentally matches 
well with experimentally obervations6 The concentration of the fluid shown in the close-up 
view of the center channel micifluidics in Figure S2A matches well with the experimental 
observations shown in Figure 5D. The pressure of the fluid in the region of the microfluidics 
channels connected to the nanochannels is shown in Figure S2B, cooresponding to force-free 
mode (top) and constant-force mode (bottom) used experimentally.  

 
Figure S2. (A) Concentration of the fluid in the center channel for the simulated microfluidics 
using experimentally used pressure values. This matches the observed fluorescence in Figure 
5D. (B) The simulated pressure gradient in the center and side microfluidic channels in the 
region the nanochannels are aligned experimentally, for the force-free mode (top) and the 
constant-force mode (bottom) using experimental inlet pressures. In constant-force mode the 
pressure drop across the nanochannels is found to be 12 mbar.6  
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To investigate the fluid dynamics in the nanochannels just below the center microfluidics 
channel, where the fluid switching is fastest and could not be examined experimentally we 
have simulated a cross section including seven nanochannels connected to a large 
microchannel above. In Figure S3 we can see the velocity profile in the microchannel when 
there is a pressure drop of 0.26 mbar, as determined from the previouse simulations, with 
fluid coming in from the left. It is clear that although there is a relativly high fluid velocity in 
the microchannel the fluid velcoity in the nanochannels is negligable, at ~10-15 m s-1. 
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Figure S3. Cross section of the simulated fluid velocity in the center microfluidic channel 
with seven nanochannels perpendicularly connected below via a topslit. The color gradient is 
the speed of the fluid moving from left to right in the upper channel. The inset shows the low 
fluid speed in the last nanochannel.6  
 
In the same silumation we also use a time-dependent solution to investigate the time for the 
solute in the upper channel to reach the nanochannels. With an initial fluid cencentration in 
the channels of 0 mM, and an input of the left of 1 mM at t = 0 s we observe a compete filling 
of the nanochannel via diffusion through the top slit in less than 5 ms. In the analysis of the 
experiments we consider this to be negligable when compared to the switching times in the 
nanochannels measured 62.5 µm from the center channel on the order of seconds. Figure S4 
shows the results of this simulation at t = 0 s, 1 ms and 2 ms, with a closeup of the 
nanochannel furthest from the inelt.  
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Figure S4. A cross section of the fluid concentration at three sequential times; 0 ms, 1 ms, and 
2 ms; in a simulation of fluid moving through the upper microfluidic channel from left to 
right with seven nanochannels connected below. The solute exchange via diffusion into the 
last nanochannel is shown in the insets.6  
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