Supporting Information

High-Surface-Area Mesoporous TiO₂ Microspheres via One-Step Nanoparticle Self-Assembly for Enhanced Lithium-Ion Storage

Hsin-Yi Wang^a, Jiazang Chen^a, Sunny Hy^b, Linghui Yu^c, Zhichuan Xu^c and Bin Liu*^a

^aSchool of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.

^bDepartment of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, Republic of China.

^cSchool of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798.

Email: liubin@ntu.edu.sg

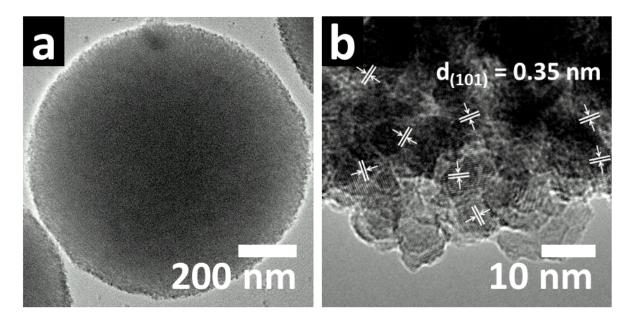


Fig. S1 (a) TEM and (b) HRTEM images of as-prepared TiO₂ microspheres.

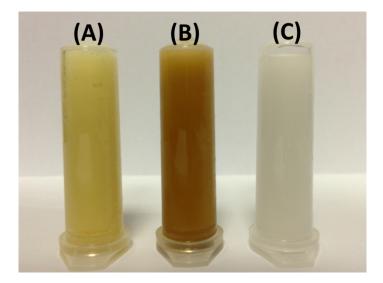
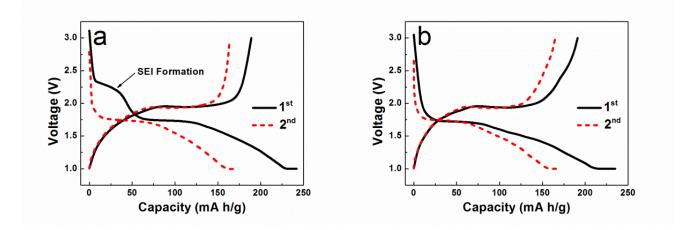



Fig. S2 Digital photograph of (A) as-prepared TiO_2 microspheres, (B) 200 °C calcined TiO_2 microspheres, and (C) 400 °C calcined TiO_2 microspheres, dispersed in water.

Fig. S3 1st and 2nd charge-discharge curves of (a) 200 °C calcined TiO₂ microspheres and (b) 400 °C calcined TiO₂ microspheres.

Fig. S4 Digital photograph of TiO_2 microspheres synthesized from one-pot synthesis. In one typical synthesis process, 2 ml of titanium isopropoxide could produce 502.8 mg of TiO_2 microspheres (after calcination at 400 °C for 2 hours), and the product yield is as high as ~ 96.1%.

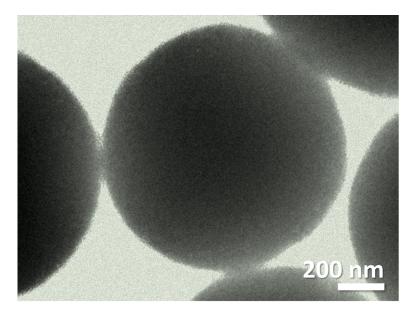
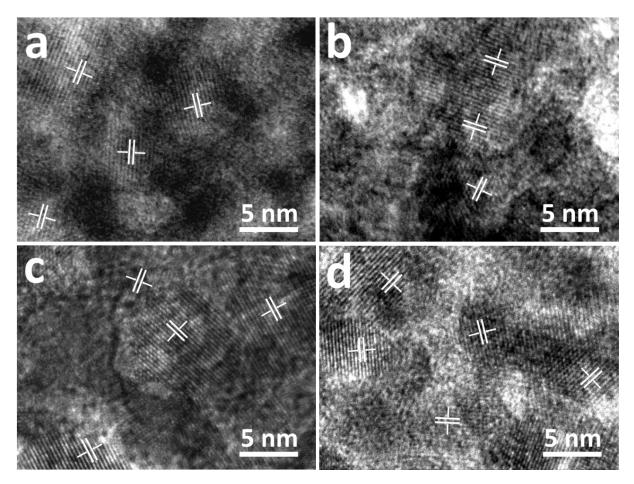



Fig. S5 TEM image of 400 °C calcined TiO₂ microspheres after 100 charge-discharge cycles.

Fig. S6 HRTEM images of 200 °C calcined TiO_2 microspheres after cycling for (a) 1 cycle and (b) 100 cycles, and 400 °C calcined TiO_2 microspheres after cycling for (c) 1 cycle and (d) 100 cycles. The interplanar distances are all 0.35 nm corresponding to the spacing between the (101) planes of tetragonal anatase.