Electronic Supplementary Information for

Porous hollow Co_3O_4 with rhombic dodecahedral structures for

high-performance supercapacitors

Yi-Zhou Zhang^a, Yang Wang^a, Ye-Lei Xie^a, Tao Cheng^a, Wen-Yong Lai^{*a}, and Huan Pang^{*b},

and Wei Huang **

- ^a Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
- ^b College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, Henan, China.
- *E-mail: iamwylai@njupt.edu.cn; huanpangchem@hotmail.com; iamwhuang@njupt.edu.cn

Calculation The specific capacitance of an electrode during galvanostatic charge/discharge can be calculated by the following equation:

$$C = \frac{i \cdot \Delta t}{m \cdot \Delta V}$$

Where m is the mass of Co₃O₄ (5 mg), ΔV is the range of charge/discharge (V), and *i* is the discharge current (A) applied for time Δt (s).

Fig. S1 XRD patterns of the as-prepared precursors.

Fig. S2. SEM images of as-prepared samples with different reaction time, a) 0.5 h, b) 8 h, c) 24 h, and d) 48 h. The scale bar= $1.0 \mu m$

Fig. S3 TG curve of the as-prepared precursor.

Fig. S4 SAED patterns of the as-prepared Co₃O₄.

Fig. S5. The capacitive performance of the conductive carbon measured at the same condition as Co_3O_4 .

Fig. S6 a) SEM image, and b) TEM image of Co_3O_4 samples after 6000 cycles.

Fig. S7. Electrochemical impedance spectroscopy (EIS) analysis of as-prepared electrodes before and after 6000 cycling test.

Fig. S8. Ragone plot regarding specific energy and power density parameters of the as-prepared electrode.