Sulfur-doped porous reduced graphene oxide hollow nanospheres framework as metal-free electrocatalysts for oxygen reduction reaction and supercapacitor electrode materials

Xi'an Chen^{a,b}, Xiaohua Chen^{a,*}, Xin Xu^b, Zhi Yang^b, Zheng Liu^a, Lijie, Zhang^b, Xiangju, Xu^b, Ying Chen^c and Shaoming Huang^{b,*}

^a College of Materials Science and Engineering, Hunan University, Hunan Province Key Laboratory for Spray Deposition Technology and Application, Changsha 410082, P. R. China. E-mail: hudacxh@qq.com.

^b Zhejiang Key Laboratory of Carbon Materials, College of Chemistry and materials engineering, Wenzhou University, Wenzhou 325027, P. R. China. E-mail: smhuang@wzu.edu.cn.

^c ARC Centre of Excellence for Functional Nanomaterials, Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.

Fig. S1 FT-IR spectra of SiO_2 and SiO_2 -NH₂(a), GO and $SiO_2@GO$ (b).

Fig. S2 (a) N₂ sorption isotherm; (b) pore size distribution of S-PGHS-900 sample.

Fig. S3 XPS N1s spectrum of S-PGHS-900

Table S1 Elemental analysis of the S-PGHS-900

elements	С	Н	S	N
content	80.65	2.082	3.028	0.14

Fig. S4 XPS spectra of the different samples.

Table S2 The corresponding S content calculated from the XPS spectra of the different samples (Fig. S4).

Samples	S-	S-	S-	S-	S-	S-	S-	PGHS-
-	PGHS-	PGHS-	PGHS-	PGHS-	PGHS-	PGHS-	2DG-	900
	1000	900	750	600	900-1-	900-5-	900	
					1	1		
S	1.19	1.99	1.01	0.78	1.23	1.14	1.1	0
content								
wt%								

Table S3 ICP a	analysis on	the S-PC	JHS-900
----------------	-------------	----------	----------------

Elements	Fe	Mn
Content (mass fraction)	0.043%	0.0097%

Fig. S5 CVs for the ORR of S-2DG-900 (a), S-PGHS-1-1-900 (b), S-PGHS-5-1-900 (c), S-PGHS-1000 (d), S-PGHS-750 (e) and S-PGHS-600 (f).

Fig. S6 Koutecky–Levich plot of J⁻¹ vs $\omega^{-1/2}$ at different electrode potentials. The experimental data were obtained from (Fig. 6 a); the lines are linear regressions.

Fig. S7 CV curves of PGHS-900 (a) and S-2DG-900 (b) at different scan rates.

Fig. S8 Specific capacitance calculated from the corresponding discharge curves of S-PGHS-900 (Fig. 8e) for each current density.