Bifacial dye-sensitized solar cells with enhanced rear efficiency and power output

Hongyuan Cai^{a,b}, Qunwei Tang^{a,b*}, Benlin He^b, Ru Li^a, Liangmin Yu^{a,c*}

^a Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean

University of China, Qingdao266100, P.R. China;

^b Institute of Materials Science and Engineering, Ocean University of China, Qingdao266100, P.R.

China;

^c Qingdao Colobrative Innovation Center of Marine Science and Technology, Ocean University of

China, Qingdao 266100, P.R. China;

*E-mail address: tangqunwei@ouc.edu.cn, yuyan@ouc.edu.cn, Tel/Fax: 86 532 66781690;

Supplementary table and figures

Table S1 Output EIS parameters of the symmetric dummy cells employing various CEs. R_s : series resistance; R_{ct} : charge-transfer resistance; CPE: corresponding chemical capacitance; W: Nerst diffusion resistance; τ : lifetime of electrons in anode.

CEs	$R_{\rm s} (\Omega { m cm}^2)$	$R_{\rm ct}(\Omega~{ m cm}^2)$	$W(\Omega \text{ cm}^2)$	τ (µs)
Ru ₂ Se	10.60	5.40	5.73	28.17
RuSe	9.38	5.08	6.30	19.88
Ru _{0.5} Se	2.49	2.88	1.01	13.03
Ru _{0.33} Se	3.18	2.77	0.93	8.94
Ru _{0.25} Se	10.49	2.98	1.75	14.62
Ru _{0.2} Se	9.48	4.68	2.58	17.65
Se	9.81	154.90	4.90	93.18
Ru	15.32	893.30	7245	9947.18
Pt	20.77	7.23	0.83	85.11

Fig. S1 Schemes representing incident light descent and electron density on conduction band of TiO_2 with irradiation from (a) front, (b) rear, and (c) both. The incident light intensity is controlled at 100 mW cm⁻² (calibrated by a standard silicon solar cell) in either side.

Fig. S2 Repeated characteristic J-V curves of the DSSCs employing Ru_{0.33}Se alloy CE for both irradiation.

Fig. S3 (a) CV curves of various CEs recorded at a scan rate of 50 mV s⁻¹; (b) CV curves of $Ru_{0.33}$ Se alloy CE at various scan rates; (c) Relationship between square root of potential and peak current density.

Fig. S4 Bode EIS spectra of the symmetric dummy cells from various CEs.