Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2014

Supplemental Material

Figure S1. XRD patterns and TEM images of metal oxide nanomaterials synthesized using the solvent-deficient method. The XRD plots show the ICDD standard pattern (red line) matched to the product (black line), with the standard's PDF number given in the legend. The numbered lines in the high-resolution TEM images highlight the lattice fringes whose d-spacings and crystal plane indices are given in Table S2 in the supplemental material.

Transition metal oxides					Semi-metal oxides				
		А	В	С			А	В	С
Group 3	Y ₂ O ₃	(1) 3.04 (2) 1.88	3.09 1.89	222 440	Group 13	γ-Al ₂ O ₃	(1) 2.37 (2) 2.37 (3) 2.05	2.28 2.28 1.98	$\begin{array}{r} 222\\ \overline{2}22\\ 400 \end{array}$
Group 4	TiO ₂	(1) 3.52 (2) 2.38 (3) 3.52 (4) 3.51	3.52 2.38 3.52 3.52	101 004 101 101	Group 13	α-Al ₂ O ₃	(1) 3.49	3.49	012
Group 4	ZrO ₂	(1) 3.36 (2) 2.66 (3) 3.36	3.36 2.65 3.36	110 101 110	Group 13	In ₂ O ₃	(1) 2.99 (2) 2.99 (3) 2.57 (4) 4.21 (5) 4.21	2.93 2.93 2.54 4.14 4.14	222 222 400 211 211
Group 7	Mn ₂ O ₃	(1) 4.98 (2) 2.77 (3) 4.98	4.71 2.72 4.71	200 222 200	Group 14	SnO ₂	(1) 3.36 (2) 2.66 (3) 3.36	3.36 2.65 3.36	110 101 110
Group 8	Fe ₂ O ₃	(1) 2.75 (2) 3.72 (3) 2.22	2.70 3.68 2.21	$10\overline{1}4$ $01\overline{1}2$ $11\overline{2}3$	Group 15	Bi ₂ O ₃	(1) 3.21 (2) 3.21 (3) 3.21 (4) 2.82	3.19 3.19 3.19 2.81	201 201 201 002
Group 8	Fe ₃ O ₄	(1) 4.84	4.82	111		Lanth	anide me	tal oxic	les
Group 9	CoO	(1) 2.44 (2) 2.45 (3) 2.44 (4) 2.45 (5) 2.13	2.45 2.45 2.45 2.45 2.45 2.13	111 111 111 111 200		CeO ₂	(1) 3.14 (2) 2.70 (3) 3.16	3.14 2.72 3.14	111 200 111
Group 9	Co ₃ O ₄	(1) 4.69 (2) 2.91 (3) 2.91 (4) 4.69 (5) 4.69	4.67 2.86 2.86 4.67 4.67	111 220 220 111 111		PrO ₂	(1) 1.97 (2) 1.97 (3) 1.69 (4) 1.69	1.93 1.93 1.65 1.65	$ \begin{array}{r} 220 \\ 220 \\ 311 \\ \overline{3}11 \end{array} $
Group 10	NiO	(1) 2.09(2) 2.09	2.09 2.09	200 200					
Group 11	CuO	(1) 2.51 (2) 2.34 (3) 2.33	2.53 2.33 2.33	$ \overline{1} 11 $ 111 111 111					
Group 12	ZnO	(1) 2.53	2.48	$10\overline{1}1$					

Table S1. Measured d-spacings (column A) and crystal plane indices (column C) of the highlighted/numbered lattice fringes in the high-resolution TEM images compared to the d-spacings of the standard (column B) matched to each compound in the XRD analyses.

Figure S2. Preliminary Netzsch milling results for the Al_2O_3 (alumina) and CeO_2 (ceria) nanomaterials showing the average agglomerate size as a function of milling time in aqueous solution.

Though the initial sizes (>200nm) of the agglomerates were quite large, the Netzsch mill deagglomerated both samples easily in water (with the pH controlled to be between 5-6 for the Al₂O₃), resulting in agglomerate sizes of 22 (\pm 15) nm and 31 (\pm 19) nm for the Al₂O₃ and CeO₂ samples, respectively, after only 3 and 1.5 hours of milling, respectively. These agglomerate sizes correspond roughly to five Al₂O₃ and two CeO₂ nanoparticles across, providing additional confirmation that our nanomaterials are soft agglomerates of relatively easily separated nanoparticles, not polycrystalline materials.

Figure S3. XRD patterns/analyses of the dried (D), dried-rinsed-dried (DRD), and rinsed-dried (RD) precursors (where applicable) plotted with the ICDD standard patterns of the materials they contain. The identities and PDF numbers of the standard patterns are given in the legend of each graph.

Figure S4. TG/DTA-MS data for the dried (un-rinsed) precursors. Positive and negative DTA values correspond to exothermic and endothermic events, respectively.

Figure S5. TG/DTA-MS data of the calcination of rinsed precursors.

