Supporting Information for

Novel Micro-Rings of Molybdenum Disulfide (MoS₂)

Chao Fan,^{*a*} Tao Li,^{*b*} Zhongming Wei,*^{*b*} Nengjie Huo,^{*a*} Fangyuan Lu,^{*a*} Juehan Yang,^{*a*} Renxiong Li,^{*a*} Shengxue Yang,^{*a*} Bo Li,^{*a*} Wenping Hu,*^{*c*} and Jingbo Li*^{*a*}

^aState Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China

^bNano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

^cBeijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

Fig.S1 OM images of the as prepared MoS₂ micro-rings with the length of external diameter and width marked on.

External diameter/µm	Statistical	Width/µm	Statistical	Height/nm	Statistical
	number		number		number
6.0-6.1	1	1.3-1.4	1	180-190	1
5.9-6.0	1	1.2-1.3	0	170-180	0
5.8-5.9	4	1.1-1.2	0	160-170	3
5.7-5.8	3	1.0-1.1	1	150-160	0
5.6-5.7	1	0.9-1.0	3	140-150	2
5.5-5.6	2	0.8-0.9	6	130-140	3
5.4-5.5	5	0.7-0.8	10	120-130	4
5.3-5.4	6	0.6-0.7	13	110-120	11
5.2-5.3	12	0.5-0.6	39	100-110	12
5.1-5.2	26	0.4-0.5	55	90-100	23
5.0-5.1	11	0.3-0.4	110	80-90	19
4.9-5.0	27	0.2-0.3	9	70-80	37
4.8-4.9	7	0.1-0.2	0	60-70	38
4.7-4.8	14			50-60	31
4.6-4.7	7			40-50	33
4.5-4.6	27			30-40	10
4.4-4.5	16			20-30	3
4.3-4.4	10			10-20	0
4.2-4.3	14			0-10	0
4.1-4.2	10				
4.0-4.1	14				
3.9-4.0	4				
3.8-3.9	13				
3.7-3.8	1				
3.6-3.7	5				
3.5-3.6	3				
3.4-3.5	2				
3.3-3.4	0				
3.2-3.3	1				
3.1-3.2	0				

Table S1. Statistical results for external diameter, width and height of MoS_2 micro-rings.

Fig.S2 Histogram of statistical results for external diameter (a), width (b) and height (c).

Fig.S3 OM images of the as prepared MoS_2 at different temperatures of 665 °C (a) and 675 °C (b), (c) OM image of the as prepared MoS_2 when the flow of Ar gas was 50 sccm .

Fig.S4 OM images of the as prepared samples. Inset of (a) and (b) are Zoom-in images for the scratches part of MoO₃ films after reaction.

To approve the proposal of "the MoO₃ pyramids with larger height were preferred to react with S to synthesize MoS_2 ", several experiments were made. Different MoO₃ films, with some scratches using tweezers, were put in the furnace to react with S at 680 °C for 5 min. Inset of Fig. S4 show OM images of the scratches. The yellow parts in two images are MoS_2 flakes or dots. MoS_2 flakes or dots resist in the protrusive parts of the scratches rather than other parts of MoO_3 films.