Supporting Information

Deep-Ultraviolet-Light-Driven Reversible Doping of WS₂ Field-Effect Transistor

Muhammad Waqas Iqbal¹, Muhammad Zahir Iqbal¹, Muhammad Farooq Khan¹, Muhammad

Arslan Shehzad², Yongho Seo², Jonghwa Eom^{1*}

¹Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Korea.

²Faculty of Nanotechnology & Advanced Materials Engineering and Graphene Research

Institute, Sejong University, Seoul 143-747, Korea.

E-mail: eom@sejong.ac.kr

We have measured the electronic transport properties of SL, BL and ML-WS₂ field effect transistor by sweeping the back gate voltage before and after DUV+N₂ treatment. Figures S1a, c and e show typical hysteresis curves observed in SL, BL and ML-WS₂ devices on SiO₂ substrate before exposing the devices to DUV+N₂ treatment, where the back gate voltage was swept continuously from -30 to +40 V and then from +40 V to -30 V. We note that threshold voltage (V_{th}) moves towards negative (positive) back gate voltage (V_{bg}) for the gate voltage sweep from -30 V (+40 V) to +40 V (-30 V). The hysteresis in threshold voltage (V_{th}) was around 6 - 8 V for SL, BL and ML-WS₂ devices on SiO₂ substrate in the pristine state, which is due to charge impurities. Similar transport measurement was done for SL, BL and ML-WS₂ devices after 30 min DUV+N₂ exposure as shown in Figure S1b, d and f, where the back gate voltage was swept continuously from -80 to +40 V and then from +40 V to -80 V. Almost no (very small) hysteresis in threshold voltage (V_{th}) was observed SL, BL and ML-WS₂ devices after DUV+N₂ treatment. The very weak hysteresis curves indicate that the number of charge impurities were reduced after DUV+N₂ exposure.

We have measured the transfer characteristics (I_{ds} - V_{bg}) of ML-WS₂ (32 nm thick) to confirm the similar effect as reported in the paper on MoS₂ films,¹ in which authors claimed that the mobility starts to decrease after a certain flake thickness. In our experiments a decrease of mobility and on/off ratio was observed for the 32-nm-thick ML-WS₂ device as compared to the 3.55-nm-thick ML-WS₂ device in our manuscript. Figure S2a shows the optical image of device used in our study. Figure S2b shows the transfer characteristics (I_{ds} - V_{bg}) of the 32-nmthick ML-WS₂ device. The mobility of device was observed as 23 cm²/Vs and the on/off ratio as ~10³, which were much lower than the mobility of 90 cm²/Vs and the on/off ratio of ~10⁵ of the 3.55-nm-thick WS₂ device.

Figure S1. (a) Transfer characteristics $(I_{ds}-V_{bg})$ of the SL-WS₂ FET on SiO₂ substrate before DUV+N₂ exposure, where the back gate voltage was swept continuously from -30 to +40 V and then from +40 V to -30 V. (b) Transfer characteristics $(I_{ds}-V_{bg})$ of the SL-WS₂ FET on SiO₂ substrate after 30 min DUV+N₂ exposure, where the back gate voltage was swept continuously from -80 to +40 V and then from +40 V to -80 V. (c) Transfer characteristics of the BL-WS₂ FET on SiO₂ substrate before DUV+N₂ exposure. (d) Transfer characteristics of the BL-WS₂ FET on SiO₂ substrate after 30 min DUV+N₂ exposure. (e) Transfer characteristics of the ML-

 WS_2 FET on SiO₂ substrate before DUV+N₂ exposure. (f) Transfer characteristics of the ML-WS₂ FET on SiO₂ substrate after 30 min DUV+N₂ exposure. All the measurements were performed in vacuum at room temperature.

Figure S2. (a) Optical image of the 32-nm-thick ML-WS₂ FET. (b) Transfer characteristics $(I_{ds}-V_{bg})$ of the 32-nm-thick ML-WS₂ FET. The mobility of device was observed as 23 cm²/Vs and the on/off ratio as ~10³.

Figure S3. (a) Transfer characteristics $(I_{ds}-V_{bg})$ of SL-WS₂ FET after the 30 min DUV+N₂ treatment. On/Off ratio of the device is ~10⁶. (b) Transfer characteristics $(I_{ds}-V_{bg})$ of BL-WS₂ FET after the 30 min DUV+N₂ treatment. On/Off ratio of the device is ~10⁵. (c) Transfer characteristics $(I_{ds}-V_{bg})$ of ML-WS₂ FET after the 30 min DUV+N₂ treatment. On/Off ratio of the device is ~10⁵. (c) Transfer characteristics $(I_{ds}-V_{bg})$ of ML-WS₂ FET after the 30 min DUV+N₂ treatment. On/Off ratio of the device is ~10⁵. (c) Transfer characteristics $(I_{ds}-V_{bg})$ of ML-WS₂ FET after the 30 min DUV+N₂ treatment. On/Off ratio of the device is ~10⁵. (c) Transfer characteristics $(I_{ds}-V_{bg})$ of ML-WS₂ FET after the 30 min DUV+N₂ treatment. On/Off ratio of the device is ~10⁵. All measurements were performed in vacuum at T = 300 K.

Figure S4. (a) Raman spectra for SL-WS₂, BL-WS₂, and ML-WS₂ films after the 10 min DUV+O₂ treatment. (b) Raman spectra for SL-WS₂, BL-WS₂, and ML-WS₂ films after the 30 min DUV+N₂ treatment. These Raman spectra reveal that additional ionic chemical bonds are not created in WS₂ films during DUV+O₂ and DUV+N₂ treatments.

Device	Device No.	Before DUV+N ₂ treatment	After DUV+N ₂ treatment
SL-WS ₂	1	24.60±0.011%	22.30±0.013%
	2	24.65±0.014%	22.37±0.015%
BL-WS ₂	1	24.42±0.015%	22.32±0.013%
	2	24.35±0.011%	22.23±0.012%
ML-WS ₂	1	24.50±0.015%	22.60±0.012%
	2	24.55±0.013%	22.63±0.014%

Table S1. Oxygen amount detected through energy-dispersive X-ray spectroscopy for SL-WS2,BL-WS2, and ML-WS2 before and after the 30 min DUV+N2 treatment.

References

1. S. Das and J. Appenzeller, *physica status solidi (RRL)-Rapid Research Letters*, 2013,

7, 268-273.