Supporting Information

A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks

Renbing Wu,^{†a} Dan Ping Wang, ^{†bc} Jianyu Han,^d Hai Liu,^c Kun Zhou, ^{*a} Yizhong Huang,^c Rong Xu,^d Jun Wei,^e Xiaodong Chen,^c and Zhong Chen^{*bc}

^{*a*} School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

^b Energy Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 6371412, Singapore

^c School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

^d School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore

^e Singapore Institute of Manufacturing Technology, Singapore 638075, Singapore

Fig. S1 An FESEM image of XRD patterns of Co₃O₄/SiO₂ hollow dodecahedra.

Fig. S2 XRD patterns of Co_3O_4/SiO_2 hollow dodecahedra.

3

Fig. S3 Nitrogen adsorption-desorption isotherms of (a) Co_3O_4/SiO_2 -100 hollow dodecahedra and (b) Co_3O_4 nanostructures

Fig. S4 TEM images of the Co_3O_4/SiO_2 hollow dodecahedra with different SiO_2 shell thicknesses obtained by adding different amounts of TEOS in the sol-gel process: (a) 60 µL and (b) 30 µL.

Fig. S5 Nitrogen adsorption-desorption isotherm curves of (a) Co_3O_4/TiO_2 hollow dodecahedra and (b) TiO_2 .

Fig. S6 (a) Low- and (b) high-magnified FESEM images, and (c) low- and (d) high-magnified TEM images of Co_3O_4 nanostructures obtained by directly heating bare ZIF-67 templates.

S6

Fig. S7 (a) Low- and (b) high-magnified FESEM images, and (c) TEM image of ZIF-8; (d) experimental and simulated XRD patterns of ZIF-8.

Fig. S8. (a) Low- and (b) high-magnified FESEM images of ZnO/TiO_2 hollow dodecahedra, (c) TEM image and (d) HAADF-STEM image of a single ZnO/TiO_2 hollow dodecahedron, (e)-(h) EDX-elemental mapping images of a single ZnO/TiO_2 hollow dodecahedron, the scar bar in (e) is 500 nm.

S9

Turnover frequency was calculated based on the total Co species added into reactor, assuming all the Co atoms present evolved in the photocatalytic reaction.¹⁻⁴

Turnover frequency calculation as follows:

Turnover frequency =	Produced oxygen in first 10 mins (mol/s)	
	Active sites number (mol)	
A stive site	mCo304	
Active site	MCo304	

 Table S1. Turnover frequencies for all catalyst

Catalyst	Co_3O_4	O_2 yield as in 1 st	Turn frequencies (s ⁻¹ per
	(wt.%)	10 mins (µmol)	Co atom) $\times 10^4$
Co ₃ O ₄	100	17.7 ± 1.5	2.4
$Co_3O_4 + SiO_2$	70.3	14.4 ± 2.0	2.8
Co ₃ O ₄ -30	80.7	19.1 ± 2.3	3.2
Co ₃ O ₄ -60	70.3	48.3 ± 2.6	9.2
Co ₃ O ₄ -100	63.8	34.6 ± 1.4	7.3

References

- [1] J. Feng; F. Heinz, Angew. Chem. Int. Ed. 2009, 48, 1841.
- [2] Y. Surendranath, M. W. Kanan, D. G. Nocera, J. Am. Chem. Soc. 2010, 132, 16501.
- [3] R. Jonathan, S. H. Gregory, J. Feng, J. Am. Chem. Soc. 2013, 135, 4516.
- [4] R. Zheng, G. Yanbing, Z. H. Zhang, C. H. Liang, P. Gao. J. Mater. Chem. A, 2013, 1, 9897.