Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Fei Ke^{ab}, Luhuan Wang^a, and Junfa Zhu*^a

- ^a National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230029 (P.R. China). Fax: (+86)-551-5141078; E-mail: jfzhu@ustc.edu.cn
- ^b Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036 (P.R. China).

Fig. S1 TEM images of Au-Fe₃O₄ (a) and Au-Fe₃O₄@MIL-100(Fe) core-shell magnetic NPs after 5 (b),10 (c), 20 (d), 30 (e) assembly cycles. (f) The correlations between the assembly cycles and the resulting diameter (red line) and shell thickness (black line).

Fig. S2 EDX spectra of Au-Fe₃O₄ (a), Au-Fe₃O₄@MIL-100(Fe) core-shell magnetic NPs after 5 (b) and 30 assembly cycles (c).

Fig. S3 (a) The reaction scheme, associated photographs of the color change for conversion of 4-NP from bright yellow to colorless, and (b) UV-vis spectra of 4-NP reduction with Au-Fe₃O₄@MIL-100(Fe) core-shell NPs after 30 assembly cycles.

Fig. S4 Catalytic conversion of 4-NP to 4-AP over Au-Fe₃O₄, MIL-100(Fe), and Au-Fe₃O₄@MIL-100(Fe) core-shell magnetic NPs after 5, 10, 20 and 30 assembly cycles, respectively.

Fig. S5 Relationship of the $\ln(C_t/C_0)$ and reaction time t for 5 cycles of 4-NP reduction under the same reaction conditions over the Au-Fe₃O₄ magnetic NPs (a), and the core-shell Au-Fe₃O₄@MIL-100(Fe) magnetic NPs synthesized with five assembly cycles (b).

Fig. S6 Catalytic conversion (a) and relationship of the $\ln(C_t/C_0)$ and reaction time t (b) for 5 cycles of 4-NP reduction over the core-shell Au-Fe₃O₄@MIL-100(Fe) magnetic NPs. The catalysts were synthesized with 30 assembly cycles.

Fig. S7 TEM images (a,b) of the Au-Fe₃O₄@MIL-100(Fe) core-shell magnetic catalysts after the catalytic reaction. The catalysts were synthesized with 30 assembly cycles.

Fig. S8 Au L₃-edge XANES spectra for Au-Fe₃O₄, MMA-Au-Fe₃O₄, and Au-Fe₃O₄@MIL-100(Fe)

core-shell magnetic NPs. The insert shows the zoom-in lines.

···· J ··· J	· J - 4	
Use	Yield (%)	$k (\min^{-1})$
first	100	2.92
second	42	0.12
third	33	0.090
fourth	15	0.054
fifth	4	0.020

Table S1 Recovery and reuse of Au-Fe₃O₄.

Table S2 Recovery and reuse of Au-Fe₃O₄@MIL-100(Fe) core-shell magnetic nanocatalysts. The catalysts were synthesized with 5 assembly cycles.

, <u>,</u>			
Use	Yield (%)	$k (\min^{-1})$	
first	100	5.53	
second	98	3.74	
third	91	2.33	
fourth	84	1.77	
fifth	80	1.57	

Table S3 Recovery and reuse of Au-Fe₃O₄@MIL-100(Fe) core-shell magnetic nanocatalysts. The catalysts were synthesized with 30 assembly cycles.

Use	Yield (%)	$k (\min^{-1})$				
first	100	0.51				
second	100	0.49				
third	99	0.42				
fourth	98	0.32				
fifth	95	0.26				

sample	bond	<i>R</i> / Å	Ν	$\sigma^2 / \text{\AA}^2(10^{-3})$	ΔE
Au-Fe ₃ O ₄	Au-Au	2.88 ± 0.02	10.4 ± 0.4	11.2 ± 1.1	3.1 ± 1.0
	Au-S	2.29 ± 0.03	0.8 ± 0.2	6.5 ± 1.0	4.0 ± 0.5
MAA-Au-Fe ₃ O ₄	Au-Au	2.87 ± 0.02	9.8 ± 0.4	13.0 ± 1.1	4.5 ± 1.2
	Au-S	2.33 ± 0.03	1.1 ± 0.2	6.1 ± 1.0	3.0 ± 0.4
Au-Fe ₃ O ₄ @MIL-100(Fe)	Au-Au	2.87 ± 0.02	10.1 ± 0.4	12.7 ± 1.1	2.9 ± 1.1
	Au-S	2.33 ± 0.03	1.0 ± 0.2	6.2 ± 1.0	3.5 ± 0.5

Table S4 Fitting parameters of the Au L3-edge EXAFS oscillations for Au-Fe3O4, MAA-Au-Fe3O4,and Au-Fe3O4@MIL-100(Fe) core-shell magnetic NPs.