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Table S1. Comparison of binding energies Eb of various C precursors on Cu(111), Ni(111), Ir(111) 
and Rh(111) surfaces by using DFT-D2 and GGA-PBE methods. C-I and C-II represent the 
carbon monomer on metal surface and subsurface, respectively. The character T, F, and H denote 
the top, fcc, and hcp adsorption sites on metal surfaces, and O denotes the octahedral adsorption 
sites on metal subsurface, respectively. Here N/A represents that CH4 molecule is not sensitive to 
the adsorption sites of metal surfaces.

Eb
B

Metal 
Surface

CHi 
species

Stable 
adsorption site DFT-D2 GGA-PBE

C-I F 3.39 4.90
C-II O 3.89 5.39
CH F 5.25 4.96
CH2 F 3.40 3.05
CH3 F 1.79 1.14C

u(
11

1)

CH4 N/A 0.21 0.05
C-I H 5.29 6.76
C-II O 5.84 7.27
CH F 6.71 6.42
CH2 F 4.44 4.06
CH3 F 2.40 1.98N

i(1
11

)

CH4 N/A 0.21 0.06
C-I H 5.68 7.08
C-II O 3.99 5.51
CH H (or F) 7.24 6.78
CH2 F 4.69 4.10
CH3 T 2.55 1.87Ir

(1
11

)

CH4 N/A 0.39 0.04
C-I H 5.71 7.21
C-II O 5.45 6.90
CH H 7.04 6.72
CH2 F 4.09 4.16
CH3 F 2.27 1.83R

h(
11

1)

CH4 N/A 0.25 0.03
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Fig. S1 The binding energies of CHi (i =0, 1, 2, 3, 4) species on Cu, Ni, Ir, and Rh surfaces as a 
function of the number of H in the CHi species. 



Computational details for relative Gibbs free energy 

The relative Gibbs free energy (ΔGf) of CHi species (i = 0, 1, 2, and 3) on metal 

surfaces is defined as,1-3

ΔGf = ET – EM + ∆Fvib – nCμC – nHμH                              (1)
where ET and EM are total energies of metal surface with and without adsorbed CHi, 

respectively, nC = 1 and nH = i are the number of C and H atoms in CHi, respectively. 

∆Fvib is the change of vibrational contributions of CHi species on metal surfaces to 

system free energy. Fvib is defined as3 
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where = 1/kT and ω is the vibrational frequency of CHi species on metal surfaces. 

Fvib is equal to the zero-point energy (ZPE) at the temperature T = 0 K. Table S2 lists 

zero-point energies (ZPE), vibrational entropies multiplied by temperature (T = 1200 

K), and total vibrational contributions to the free energy of various CHi species (i=0, 

1, 2, and 3) on Cu(111), Ni(111), Ir(111) and Rh(111) surfaces. μH is the hydrogen 

chemical potential, that is a function of temperature and H2 partial pressure. The μH 

can be written as,1,2

                              (3)2H2 ( , ) ln( )H trans rot vib
kTT p E kT g
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where EH2 is DFT calculated energy of a hydrogen molecule (-6.760 eV), k is 

Boltzmann constant, p is partial pressure of H2, and g is the degree of degeneracy of 

the electron energy level. , , and are the partition functions for translational, trans rot vib

rotational, and vibration motions, respectively. Taking one-half of the energy of a H2 

molecule (EH2) as a reference, the dependence of μH on temperature T and H2 partial 

pressure p is shown in Fig. S2. μC is carbon chemical potential and it depends on 

growth temperature T and the partial pressure ratio of CH4 and H2 during the growth, 4
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where ∆E is the DFT energy difference of CH4 and H2 molecules (∆E= ECH4-2EH2 = -

10.507 eV), and  is related to the term of T and H2 pressure of Eq.(3).*
H





Table S2. Zero-point energies (ZPE), vibrational entropies multiplied by temperature (T = 1200 
K), and vibrational contributions to the free energy of various CHi species (i=0, 1, 2, and 3) on 
Cu(111), Ni(111), Ir(111) and Rh(111) surfaces. C-I and C-II represent the carbon monomer on 
metal surface and subsurface, respectively.

Surface CHi ZPE (eV) TS (eV) Fvib (eV)

C-I 0.09 0.30 -0.21
C-II 0.10 0.30 -0.20
CH 0.34 0.52 -0.18
CH2 0.58 0.78 -0.20C

u(
11

1)

CH3 0.91 0.95 -0.04
C-I 0.11 0.29 -0.18
C-II 0.11 0.29 -0.18
CH 0.35 0.51 -0.16
CH2 0.57 0.78 -0.21N

i(1
11

)

CH3 0.89 0.94 -0.05
C-I 0.10 0.30 -0.20
C-II 0.10 0.30 -0.20
CH 0.38 0.50 -0.12
CH2 0.59 0.74 -0.15Ir

(1
11

)

CH3 0.95 1.11 -0.16
C-I 0.10 0.30 -0.20
C-II 0.10 0.30 -0.20
CH 0.36 0.51 -0.15
CH2 0.59 0.74 -0.15R

h(
11

1)

CH3 0.88 0.95 -0.07
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Fig. S2 The dependence of H chemical potential μH (eV) on temperature T and H2 pressure p. 
Here one-half of the energy of a H2 molecule is taken as a reference. 
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Fig. S3 The carbon chemical potential μC (eV) as a function of H2 pressure (PH2) for the ratio of 
partial pressures between CH4 and H2 (χ = PCH4 / PH2) at 100, 1, 1/100, and 1/1000. 

Fig. S4 (a) Diffusion pathways and (b) diffusion barriers of various CHi species (i = 0,1 ,2, 3) on 
Cu(111), Ni(111), Ir(111), and Rh(111) surfaces. The surface diffusion pathway is HFH, the 
diffusion pathway of C atom in metal subsurface is OO, and the diffusion pathway of C atom 
from subsurface to surface is OF. C-I and C-II represent the carbon atom on metal surface and 
subsurface, respectively.
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