Electronic supplementary information

What are the Active Carbon Species during Graphene Chemical Vapor Deposition Growth?

Haibo Shu^{ab}, Xiao-Ming Tao^a, and Feng Ding^{*a}

^{*a*} Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China ^{*b*} College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China

*Corresponding authors. Feng Ding, E-mail: Feng.Ding@inet.polyu.edu.hk

Table S1. Comparison of binding energies E_b of various C precursors on Cu(111), Ni(111), Ir(111) and Rh(111) surfaces by using DFT-D2 and GGA-PBE methods. C-I and C-II represent the carbon monomer on metal surface and subsurface, respectively. The character T, F, and H denote the top, fcc, and hcp adsorption sites on metal surfaces, and O denotes the octahedral adsorption sites on metal subsurface, respectively. Here N/A represents that CH_4 molecule is not sensitive to the adsorption sites of metal surfaces.

Metal	CH _i	Stable	E _b	
Surface	species	adsorption site	DFT-D2	GGA-PBE
Cu(111)	C-I	F	3.39	4.90
	C-II	0	3.89	5.39
	СН	F	5.25	4.96
	CH ₂	F	3.40	3.05
	CH ₃	F	1.79	1.14
	CH ₄	N/A	0.21	0.05
Ni(111)	C-I	Н	5.29	6.76
	C-II	0	5.84	7.27
	СН	F	6.71	6.42
	CH ₂	F	4.44	4.06
	CH ₃	F	2.40	1.98
	CH ₄	N/A	0.21	0.06
Ir(111)	C-I	Н	5.68	7.08
	C-II	0	3.99	5.51
	СН	H (or F)	7.24	6.78
	CH ₂	F	4.69	4.10
	CH ₃	Т	2.55	1.87
	CH ₄	N/A	0.39	0.04
Rh(111)	C-I	Н	5.71	7.21
	C-II	0	5.45	6.90
	СН	Н	7.04	6.72
	CH ₂	F	4.09	4.16
	CH ₃	F	2.27	1.83
	CH ₄	N/A	0.25	0.03

Fig. S1 The binding energies of CH_i (i =0, 1, 2, 3, 4) species on Cu, Ni, Ir, and Rh surfaces as a function of the number of H in the CH_i species.

Computational details for relative Gibbs free energy

The relative Gibbs free energy (ΔG_f) of CH_i species (*i* = 0, 1, 2, and 3) on metal surfaces is defined as,¹⁻³

$$\Delta G_{\rm f} = E_{\rm T} - E_{\rm M} + \Delta F_{\rm vib} - n_{\rm C}\mu_{\rm C} - n_{\rm H}\mu_{\rm H} \tag{1}$$

where $E_{\rm T}$ and $E_{\rm M}$ are total energies of metal surface with and without adsorbed CHi, respectively, $n_{\rm C} = 1$ and $n_{\rm H} = i$ are the number of C and H atoms in CH_i, respectively. $\Delta F_{\rm vib}$ is the change of vibrational contributions of CH_i species on metal surfaces to system free energy. $F_{\rm vib}$ is defined as³

$$F_{\nu ib}(\omega,T) = \mathbf{h}\omega(\frac{1}{2} + \frac{1}{e^{\beta h\omega} - 1}) - kT[\frac{\beta h\omega}{e^{\beta h\omega} - 1} - \ln(1 - e^{-\beta h\omega})]$$
(2)

where $\beta = 1/kT$ and ω is the vibrational frequency of CH_i species on metal surfaces. F_{vib} is equal to the zero-point energy (ZPE) at the temperature T = 0 K. Table S2 lists zero-point energies (ZPE), vibrational entropies multiplied by temperature (T = 1200K), and total vibrational contributions to the free energy of various CH_i species (i=0, 1, 2, and 3) on Cu(111), Ni(111), Ir(111) and Rh(111) surfaces. μ_{H} is the hydrogen chemical potential, that is a function of temperature and H₂ partial pressure. The μ_{H} can be written as,^{1,2}

$$2\mu_{\rm H}(T,p) = E_{H_2} - kT \ln(\frac{kT}{p} \times g \times \zeta_{trans} \times \zeta_{rot} \times \zeta_{vib})$$
(3)

where E_{H2} is DFT calculated energy of a hydrogen molecule (-6.760 eV), *k* is Boltzmann constant, p is partial pressure of H₂, and *g* is the degree of degeneracy of the electron energy level. ζ_{trans} , ζ_{rot} , and ζ_{vib} are the partition functions for translational, rotational, and vibration motions, respectively. Taking one-half of the energy of a H₂ molecule (*E*_{H2}) as a reference, the dependence of μ_H on temperature *T* and H₂ partial pressure *p* is shown in Fig. S2. μ_C is carbon chemical potential and it depends on growth temperature *T* and the partial pressure ratio of CH₄ and H₂ during the growth, ⁴

$$\mu_{C}(T, \frac{p_{CH4}}{p_{H2}}) = \Delta E - 2\mu_{H}^{*} + kT \ln \frac{p_{CH4}}{p_{H2}}$$
(4)

where ΔE is the DFT energy difference of CH₄ and H₂ molecules ($\Delta E = E_{CH4}-2E_{H2} = -10.507 \text{ eV}$), and μ_{μ}^{*} is related to the term of *T* and H₂ pressure of Eq.(3).

Table S2. Zero-point energies (ZPE), vibrational entropies multiplied by temperature (T = 1200 K), and vibrational contributions to the free energy of various CH_i species (i=0, 1, 2, and 3) on Cu(111), Ni(111), Ir(111) and Rh(111) surfaces. C-I and C-II represent the carbon monomer on metal surface and subsurface, respectively.

Surface	CH _i	ZPE (eV)	TS (eV)	F _{vib} (eV)
Cu(111)	C-I	0.09	0.30	-0.21
	C-II	0.10	0.30	-0.20
	СН	0.34	0.52	-0.18
	CH ₂	0.58	0.78	-0.20
	CH ₃	0.91	0.95	-0.04
Ni(111)	C-I	0.11	0.29	-0.18
	C-II	0.11	0.29	-0.18
	СН	0.35	0.51	-0.16
	CH ₂	0.57	0.78	-0.21
	CH ₃	0.89	0.94	-0.05
lr(111)	C-I	0.10	0.30	-0.20
	C-II	0.10	0.30	-0.20
	СН	0.38	0.50	-0.12
	CH ₂	0.59	0.74	-0.15
	CH ₃	0.95	1.11	-0.16
Rh(111)	C-I	0.10	0.30	-0.20
	C-II	0.10	0.30	-0.20
	СН	0.36	0.51	-0.15
	CH ₂	0.59	0.74	-0.15
	CH ₃	0.88	0.95	-0.07

Fig. S2 The dependence of H chemical potential $\mu_{\rm H}$ (eV) on temperature *T* and H₂ pressure *p*. Here one-half of the energy of a H₂ molecule is taken as a reference.

Fig. S3 The carbon chemical potential $\mu_{\rm C}$ (eV) as a function of H₂ pressure ($P_{\rm H2}$) for the ratio of partial pressures between CH₄ and H₂ ($\chi = P_{\rm CH4} / P_{\rm H2}$) at 100, 1, 1/100, and 1/1000.

Fig. S4 (a) Diffusion pathways and (b) diffusion barriers of various CH_i species (i = 0, 1, 2, 3) on Cu(111), Ni(111), Ir(111), and Rh(111) surfaces. The surface diffusion pathway is $H \rightarrow F \rightarrow H$, the diffusion pathway of C atom in metal subsurface is $O \rightarrow O$, and the diffusion pathway of C atom from subsurface to surface is $O \rightarrow F$. C-I and C-II represent the carbon atom on metal surface and subsurface, respectively.

Notes and references

- 1. Y. Kangawa, T. Ito, A. Taguchi, K. Shiraishi and T. Ohachi, *Surf. Sci.*, 2001, **493**, 178-181.
- 2. C. G. Van de Walle and J. Neugebauer, Phys. Rev. Lett., 2002, 88, 066103.
- 3. K. Reuter and M. Scheffler, Phys. Rev. B, 2001, 65, 035406.
- 4. W. H. Zhang, P. Wu, Z. Y. Li, and J. L. Yang, *J. Phys. Chem. C*, 2011, **115**, 17782-17787.