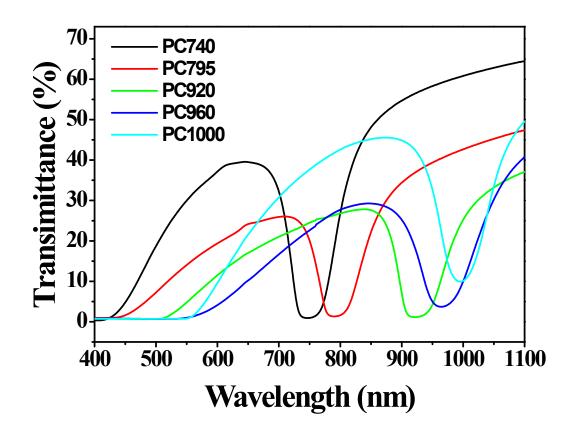
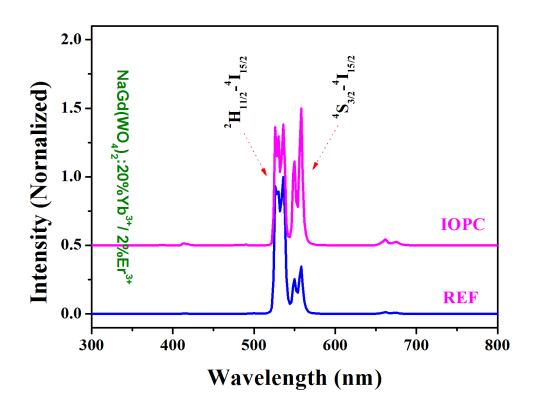
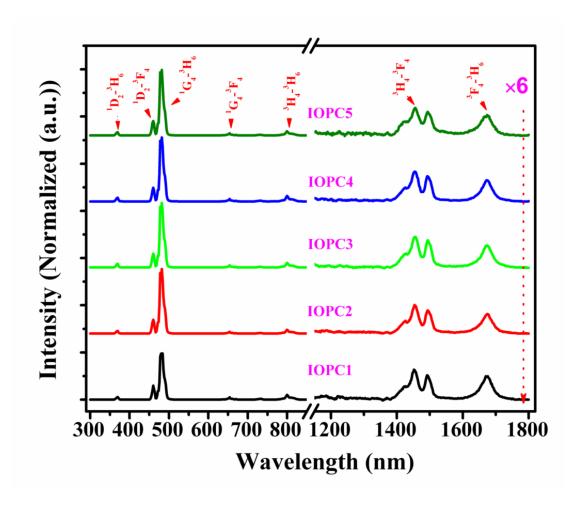
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2014

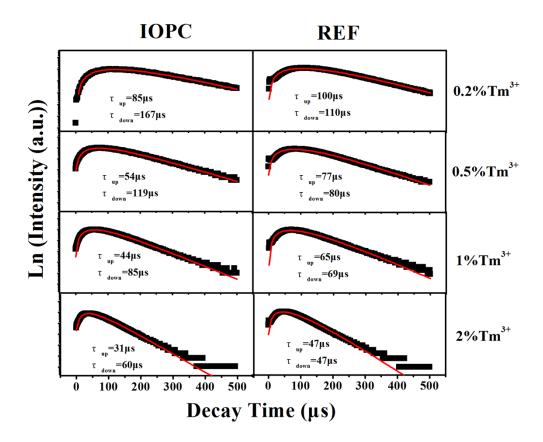

Highly Improved Upconversion Luminescence in

 $NaGd(WO_4)_2$: Yb^{3+}/Tm^{3+}


Inverse Opal Photonic Crystals

Yunfeng Wang^{†‡}, Wen Xu[†], Shaobo Cui^{†‡}, Sai Xu[†], Ze Yin[†], Hongwei Song^{*†}, Pingwei Zhou[†], Xiaoyan Liu[†], Lin Xu[†], and Haining Cui^{*‡}


† State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China ‡ College of Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China


Figure s1: Transmittance spectra of the PMMA templates measured at $\theta = 0^{\circ}$.

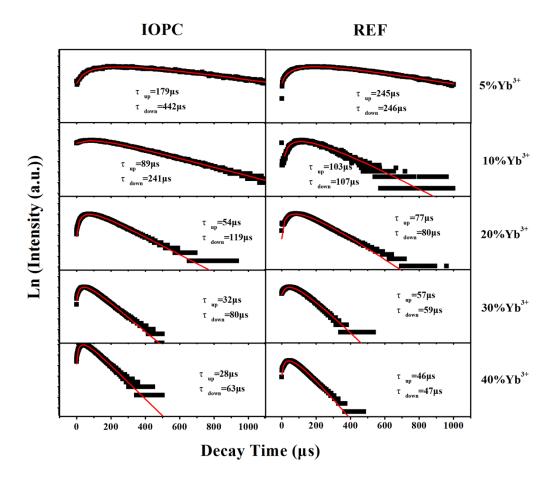

Figure S2: The typical UCL spectra of the IOPC and REF samples under the 980 nm NIR excitation power density (75mW/mm^2) with the doping concentration of 20% Yb³⁺/ 2% Er³⁺.

Figure S3: The UCL and NIR emission lines of the NaGd(WO₄)₂ : 20%Yb^{3+/} 0.5Tm³⁺ IOPCs with the different PSBs under the same 980 nm NIR excitation power density (75mW/mm²).

Figure S4: The UCL decay dynamics of the transitions at 480nm of Tm^{3+} ions in $NaGd(WO_4)_2:20\%Yb^{3+}/xTm^{3+}$ IOPC and REF samples with the different doping concentrations of Tm^{3+} ions (0.2%, 0.5%, 1% and 2%) by monitoring the UC emissions under the excitation of 980 nm laser.

Figure S5: The UCL decay dynamics of the transitions at 480nm of Tm³⁺ ions in NaGd(WO₄)₂:xYb³⁺/0.5%Tm³⁺ IOPC and REF samples with the different doping concentrations of Yb³⁺ ions (5%, 10%, 20%, 30% and 40%) by monitoring the UC emissions under the excitation of 980 nm laser.

Based on the principle of energy conservation law,

$$\eta_{UC}(IOPC) + \eta_{DC}(IOPC) + \eta_{T}(IOPC) = 1$$

$$\eta_{UC}(REF) + \eta_{DC}(REF) + \eta_{T}(REF) = 1$$

Where η_{UC} is the UCL efficiency, η_{DC} is the DCL efficiency, η_{T} is the thermal radiative efficiency. According to the experimental result of Figure 11 $\eta_{T}(IOPC) > \eta_{T}(REF)$,

$$\eta_{\mathit{UC}}(IOPC) + \eta_{\mathit{DC}}(IOPC) > \eta_{\mathit{UC}}(REF) + \eta_{\mathit{DC}}(REF)$$

$$\frac{\eta_{UC}(IOPC)}{\alpha} > \frac{\eta_{UC}(REF)}{\beta}$$

$$\alpha = \frac{\eta_{UC}(IOPC)}{\eta_{UC}(IOPC) + \eta_{DC}(IOPC)} \qquad \beta = \frac{\eta_{UC}(REF)}{\eta_{UC}(REF) + \eta_{DC}(REF)}$$

Where α and β represent the ratio of UCL to UCL+DCL. According to the Equation above, the decrease of DCL in the IOPC would inevitably induce the increase of UCL.