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Bloch mode decomposition technique

Here, we will describe the details of the Bloch mode decomposition technique. This
technique is used to calculate the Bloch mode expansion coefficient, a,. [see Figure 2(e)].

The modes of PC1 are Bloch modes. Each of the Bloch mode can be identified with a pair of

indices that denote the band index, n, and the wavevector, k. The Bloch mode, ¢n’,{ (x), of

PC1 with frequency , , , satisty the 1D time — independent Maxwell’s equation,

[d_zﬁ w”z’k 51(x)}¢nk(x)=0 [S1],
dx c ’

where ¢/(x) 1is the dielectric function of PCI. The Bloch modes of PCl obey the

orthogonalization condition,
1 al2
; J‘fa/z ¢m’k'(x)gl (x)¢”ak (X)dx = 5mn,kk' [SZ] .

Let us expand the electric filed, E(x), in the LCPC using the complete set of PC1’s Bloch

modes:

E(x)=Ya,,8,,(x) [S3].

This electric field obeys the 1D time — independent Maxwell’s equation,

[d—22+w—228(x)}E(x) =0 [S4],
dx- ¢

where &(x) is the dielectric function of the LCPC. Expressing &(x) = &,(x)+¢,(x), and

using Eqns. S1 — S3, we can transform Eqn. S4, into a system of linear equations,



1 a2 a)jl .
_Zan,k_l: ” ¢m,k'(‘x)gp(x)¢n,k (x)d‘x =( 7zk - 1\]am,k' [SS]
a as a

s nk

.. 1 a,/ * * . .
Writing —I jz B, (X)E,(X)9,  (x)dx as <¢mk, ‘gp ¢nk>, and re-arranging Eqn. S5, we arrive
a_d-an’m . : :

at the following symmetrical eigenvalue problem,

¢n k>+5mn kk' Cz
[an,ka)n,k] = gam,k'a)m,k' [86])

Z<¢;,k-\ep

n,k a)m,k'a)n,k
with the eigenvalues ¢/ «?.

Before proceeding, let us examine the term, <¢m’k.‘8p

¢n’k>, in Eqn. S6. This term
describes the coupling of PC1’s Bloch mode due to the perturbation, &,(x). Since, the period
of &,(x) is equal to a; = Ra, the conservation of the translational symmetry requiresk — k' to

be multiples of g = 2n/a, = 2n/Ra. This means, different Bloch modes of PC1 will couple to

each other, only if their wavevectors differ by multiples of g. [i.e., <¢,:,k.‘gp

¢n’k> #0, only

when k —k'is a multiple of g]. At such, it is useful to consider a folded band structure of PC1
[see the main text for the details]. In the folded band structure, the wavevectors of the

adjacent bands differ exactly by g.

For a given wavevector, k, within the first BZ of the LCPC, the Bloch modes in the
same folded cannot couple to each other. Only modes with the same £, but in different folded
bands can couple. Therefore, for a given k, we can re-write Eqn. S6 using a single index

subscript,

* 6 2
Z<¢m £ 4,)+ 90, [ana)n]zc—zama)m [S7].
n a)ma)n a)



Here, n is the index of the folded band. Eqn. S7 can be written in a matrix form as

~ I r r . . . .
Bv=[c’/ &'V, where v =[a®, a,w, .. .]" .Inverting this matrix equation we have,

B [0/ T [S8].

Solving the eigenvalue problem in Eqn. S8, the expansion coefficients [a,] can be found. One
can also use Eqn. 8 to obtain the band structure of the LCPC. Please take note that, if we

express both ¢, and ¢, in the plane wave basis (i.e., using a Fourier series), then Eqn. S8

will revert to the standard equations that describes the well-known plane wave expansion

technique [17]. However, the information on a, will be lost in the plane wave basis.



