

Composite nanoplatelets combining soft-magnetic iron-oxide with hard-magnetic barium hexaferrite
(Supporting Information #4)

Supporting Information # 4: Magnetic properties of physical mixtures of the hard-magnetic hexaferrite and the soft-magnetic spinel ferrite

To show a clear difference between the hysteresis of the exchange-coupled composite nanoparticles and that of a physical mixture of the two magnetic phases, the core nanoparticles BaM₁₀₀ (Figure S4(a)) were mechanically mixed with the spinel-ferrite maghemite nanoparticles S, which had a comparable volume to the spinel-ferrite layer at the hexaferrite cores of the composite nanoparticles (Figure S4(b)). To minimize the effect of inter-particle interactions, 10 wt.% of both nanoparticles were first mixed with diamagnetic BN and then the two types of the diluted nanoparticles were mixed together in different ratios.

First, the two magnetic phases were mixed in the same ratio, as determined in the composite. The phase composition was estimated from the Fe / Ba ratio measured by ICP-AS chemical analysis of the dissolved composite nanoparticles to be 61.5 wt.% BaFe₁₂O₁₉ / 38.5 wt.% Fe₂O₃. Figure S5 shows the hystereses for the core nanoparticles BaM₁₀₀ (blue loop), the spinel-ferrite nanoparticles S (magenta loop) and the physical mixture of the two (black loop). The hysteresis of the mixture is close to the sum of the hystereses for the two components (red loop), calculated using the formula $M_{\text{mix}}(H_i) = w_{HF} M_{HF}(H_i) + w_{Sp} M_{Sp}(H_i)$, where w_{HF} and w_{Sp} are the mass fractions of the BaM₁₀₀ hexaferrite and the S spinel ferrite, respectively. The mixture S + BaM₁₀₀ shows a characteristic constricted hysteresis loop as the two phases magnetize independently.

The shape of the hysteresis loop of the hard-magnetic phase is very sensitive to the addition of the non-coupled, soft-magnetic phase. Figure S6 shows experimental and calculated hysteresis loops for the S + BaM₁₀₀ physical mixtures containing 10 wt.% and 2 wt.% of the spinel ferrite S.

Composite nanoplatelets combining soft-magnetic iron-oxide with hard-magnetic barium hexaferrite
(Supporting Information #4)

If the coupling is absent, the shape of the loop for the mixture changed significantly even for the addition of just 2 wt.% of the soft-magnetic phase to the hard-magnetic phase.

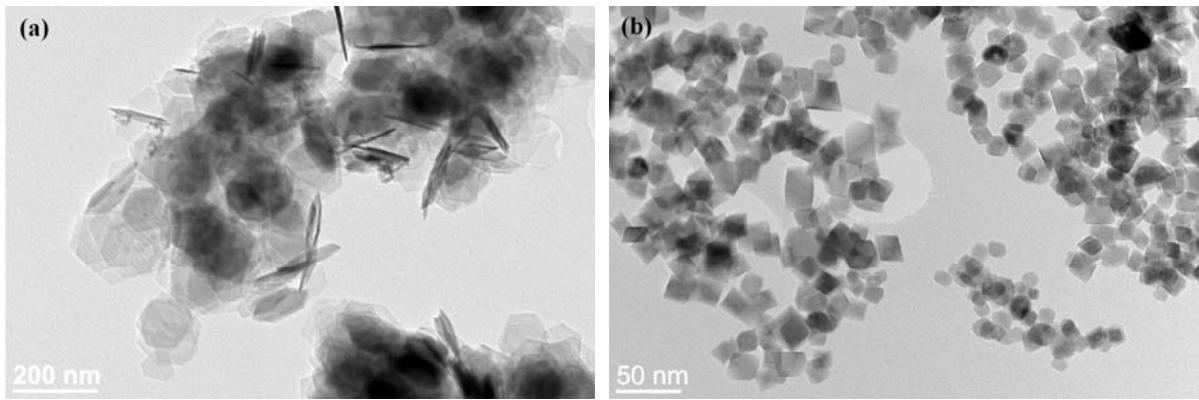


Figure S4: TEM images of the core nanoparticles BaM₁₀₀ (a) and the spinel-ferrite nanoparticles S (b).

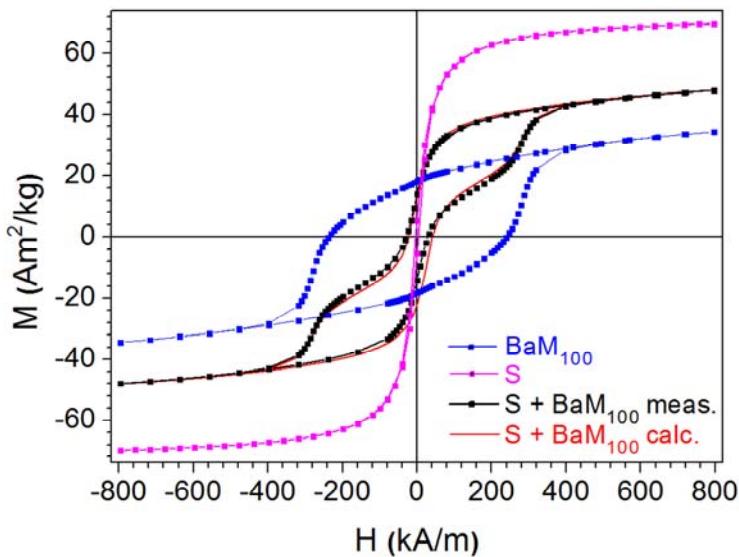


Figure S5: Measured hystereses for the core nanoparticles BaM₁₀₀, the spinel-ferrite nanoparticles S, and the physical mixture (S + BaM₁₀₀ meas.), and the hysteresis loop calculated from the corresponding contributions of the two magnetic components in the mixture (S + BaM₁₀₀ calc.).

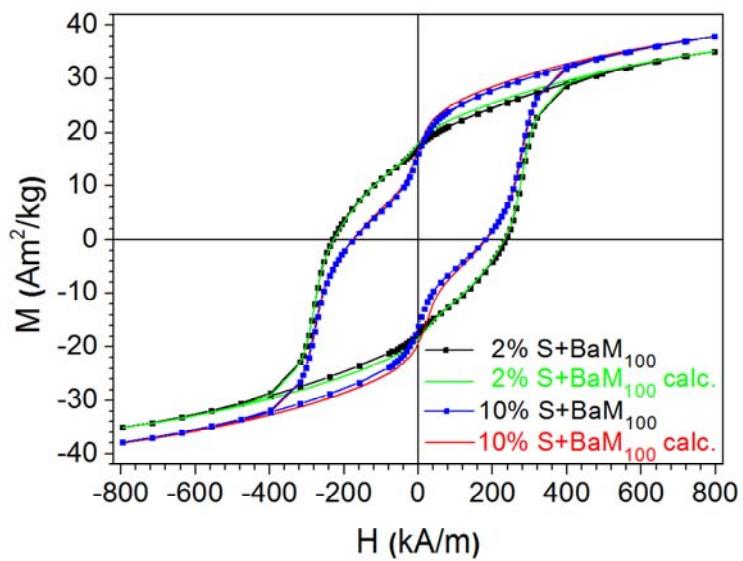


Figure S6: Measured and calculated hystereses for the S + BaM₁₀₀ mixtures containing 10 wt.% and 2 wt.% of spinel-ferrite nanoparticles S.