Supporting Information

Iron Oxides Nanoparticles Immobilized to Mesoporous NH₂-SiO₂ Spheres by Sulfonic Acid Functionalization as Highly Efficient Catalysts

Guoliang Zhang,*a Lei Qin, a Yujiao Wu, a Zehai Xu a and Xinwen Guo b

 ^a Institute of Oceanic and Environmental Chemical Engineering, College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014, China
^b State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, Dalian University of Technology, Dalian 116012, China

Tel/Fax: 86-571-88320863; E-mail: guoliangz@zjut.edu.cn

Sample	SBET	SLangmuir	SBJH	Vmeso	Average pore
	(m^{2}/g)	(m ² /g)	(m2/g)	(cm^{3}/g)	diameter (nm)
AMAS	287.63	181.52	450.83	0.61	8.49
SA-AMAS	321.13	294.04	420.46	0.52	6.51
Fe ₂ O ₃ /SA-AMAS	174.12	153.12	227.55	0.23	5.39

Table S1 BET surface area and textural data for synthesized different samples

Fig. S1 Effect of methanol and 2-propanol on degradation X-3B by using Fe₂O₃/SA-AMAS as catalyst. (T=298 K, pH=6.0, C_{cat}=0.5 g·l⁻¹, C_{X-3B,0}=100 m g·l⁻¹, C_{H2O2,0}=5.0 mM; methanol: 10 mM; 2-propanol: 10 mM)

Fig. S2 Effect of H₂O₂ dosage on the degradation and TOC removal rate of X-3B (A), H₂O₂ decomposition and iron leaching (B) (T = 298 K, initial pH = 6.0, C_{Cat.} = 0.5 g·1⁻¹, C_{X-3B, 0} = 100 m g·1⁻¹). \triangle 2.5 mM \square 5.0 mM \Rightarrow 7.5 mM \circ 10.0 mM

Fig. S3 Effect of catalyst loading on the degradation and TOC removal rate of X-3B (A), H₂O₂ decomposition and iron leaching (B) (T = 298 K, initial pH = 6.0, C_{X-3B, 0} = 100 m g·l⁻¹, C_{H2O2, 0} = 5.0 mM). $\triangle 0.25 \text{ g·l}^{-1} \square 0.50 \text{ g·l}^{-1} \odot 0.75 \text{ g·l}^{-1}$

Fig. S4 Effect of initial pH value on the degradation and TOC removal rate of X-3B (A), H₂O₂ decomposition and iron leaching (B) (T = 298 K, C_{cat.} = 0.5 g·l⁻¹, C_{X-3B,0} = 100 m g·l⁻¹, C_{H2O2,0} = 5.0 mM). $\triangle 4.0 \Box 5.0 \doteqdot 6.0 \circ 7.0$

Fig. S5 Effect of Fe loading amount on the catalytic reactivity and the concentration of leached Fe ions for the catalyst in the reaction processes.

Fig. S6 Concentrations of leached Fe for the catalyst in the reaction processes.

Fig. S7 FTIR spectra of Fe₂O₃/SA-AMAS used after three cycles.

Fig. S8 Element analysis of Fe_2O_3/AMS (a), $Fe_2O_3/AMAS$ (b), and $Fe_2O_3/SA-AMAS$ (c) at three points.