Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2014

1	Electronic Supplementary Information for
2	Amplified electrochemiluminescent aptasensor using Au
3	nanoparticles capped 3,4,9,10-perylene tetracarboxylic acid-
4	thiosemicarbazide functionalized C_{60} nanocomposites as
5	signal enhancement
6	Meng-Nan Ma, Xia Zhang, Ying Zhuo*, Ya-Qin Chai *, Ruo Yuan
7	Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest
8	University), Ministry of Education, College of Chemistry and Chemical Engineering,
9	Southwest University, Chongqing 400715.
10	The preparation of the comparison of the different nanomaterials and their
11	corresponding UV-vis absorption spectroscopy (UV) characterization
12	Preparation of TSC-PTC nanocomplexes
13	Briefly, 100 µL of freshly prepared EDC/NHS solution (40 mM EDC, 10 mM NHS)
14	was added into 300 μ L PTCA solution (1mg/mL) for 30 min to activate the carboxyl
15	group. Afterwards, 300 μL of 10 mM TSC was added for 12 h under stirring,
17	
10	followed by centrifuging and washing twice by distilled water. The prepared material
10	followed by centrifuging and washing twice by distilled water. The prepared material was dispersed in distilled water and stored at 4°C when not used.
17 18	followed by centrifuging and washing twice by distilled water. The prepared material was dispersed in distilled water and stored at 4°C when not used. Preparation of AuNPs/TSC-PTC/C ₆₀ NPs nanocomplexes

20 PTCA solution (1mg/mL) and 650 μL C_{60}NPs (1mg/mL) were mixed together with

^{*} Corresponding authors at: Tel: +86-023-68252277; Fax: +86-23-68253172 E-mail addresses: yingzhuo@swu.edu.cn, yqchai@swu.edu.cn

stirring for 12 h and then the resultant mixture was centrifuged and washed for several 21 times by distilled water. Afterwards, 100 µL of freshly prepared EDC/NHS solution 22 (40 mM EDC, 10 mM NHS) was added into the above C₆₀NPs/PTCA solution for 30 23 min to activate the carboxyl group. Subsequently, 300 µL of 10 mM TSC was added 24 for 12 h under stirring, followed by centrifuging and washing twice by distilled water. 25 Finally, 150 µL prepared AuNPs solution was added into the mixture for about 12 h 26 with stirring. In order to remove the excess AuNPs, the resulting mixture was also 27 washed for several times by distilled water. The prepared nanocomplexes was stored 28 at 4°C until use. 29

30 UV-vis absorption spectroscopy (UV) characterization

UV was used to characterize the successful preparation of different nanomaterials 31 (Fig. S1). Firstly, from the Fig. S1 A, we could see that $C_{60}NPs$ had three strong 32 absorption at 209, 265, and 345 nm, respectively (curve a), which is in accordance 33 with the reported results.¹ PTCA had two characteristic absorption peaks at 470 and 34 551 nm (curve b). After the PTCA/C₆₀NPs nanocomplexes was formed, the 35 absorption of C₆₀NPs showed a red-shift trend and some characteristic absorption 36 peaks of PTCA were missing (curve c), which demonstrated that PTCA/C₆₀NPs 37 nanocomplexes was successfully synthesized via π - π stacking interactions. 38 Simultaneously, as shown in Fig. S1 B, TSC had a characteristic absorption peak at 39 235 nm (curve a) and the characteristic absorption peaks of TSC-PTC nanocomplexes 40 were observed at 219, 484 and 549 nm, respectively (curve c), suggesting that the 41 successful preparation of TSC-PTC nanocomplexes. Finally, as can be seen in Fig. S1 42

43 C, AuNPs had a characteristic absorption peak at 521 nm (curve a). Comparing with 44 the individual nanomaterial, the spectrum of AuNPs/TSC-PTC/C₆₀NPs 45 nanocomplexes contained the characteristic absorption peaks of each individual 46 nanomaterial with a shift (curve b), which revealed that AuNPs/TSC-PTC/C₆₀NPs 47 nanocomplexes was successfully prepared.

55

56 Table S1 Comparison of the TB detection with different ECL systems.

ECL system	Co-reactant	Linear range	LOD	Sensitivity	Ref.
$Fe_{3}O_{4}@CdSe$ - $S_{2}O_{8}^{2}$ -	S ₂ O ₈ ²⁻	1.0 pM-5.0 nM	0.12 pM	454.97	2
luminol-AuNPs	H_2O_2	5.0 pM-50 nM	1.7 pM	287.00	3
CdTe/ZnS-	Te/ZnS- O ₂ MP	1.0 nM-150 nM	0.10 nM	_	4
dGMP					
S ₂ O ₈ ²⁻ -O ₂	TSC-PTC	0.010 pM-10 nM	3.3 fM	1919.20	Present work

57

58 References

- 59 [1] A. Graja, I. Olejniczak, A. Bogucki, D. Bonifazi and F. Diederich,
- 60 Chem. Phys., 2004, **300**, 227 232.
- 61 [2] G. F. Jie, J. X. Yuan, Anal. Chem., 2012, 84, 2811–2817.
- 62 [3] L. Fang, C. Hua, Biosens. Bioelectron., 2013, 39, 261-267.
- 63 [4] P. Zhao, L. F. Zhou, Z. Nie, X. H. Xu, W. Li, Y. Huang, K. Y. He, S. Z. Yao, Anal.
- 64 Chem., 2013, **85**, 6279–6286.