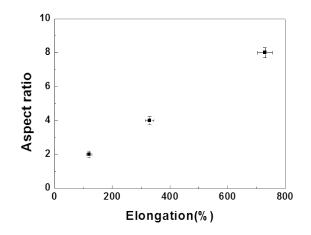
Supplementary Information

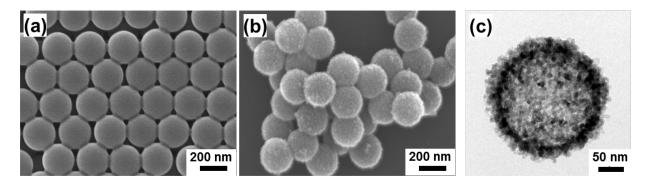
Geometrical implication of ion transporters employing ellipsoidal

hollow structure in oligomer electrolytes

Youngjin Kim^{a,b}, Jong Hyuk Park^a, Jihoon Jung^c, Sang-Soo Lee*^{a,b}


^a Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea.

^b KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Korea.


^c Department of Chemical Engineering, Kyounggi University, Suwon 443-760, Korea.

[*] Dr. Sang-Soo Lee, e-mail: s-slee@kist.re.kr, Tel: 82-2-958-5356, Fax: 82-2-958-5309

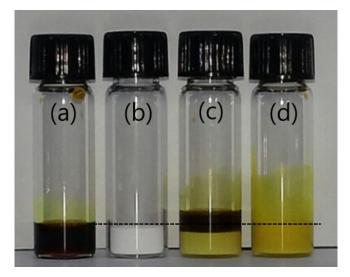

Figures

Figure S1. Aspect ratio of polystylene (PS) particles to degree of elongation for poly(vinyl alcohol) films containing PS particles.

Figure S2. SEM images of (a) the pristine spherical PS particles and (b) the TiO_2 hollow spheres derived from formation of TiO_2/PS core-shell hybrid particles and subsequent removal of PS component. (c) TEM image of the TiO_2 hollow spheres.

Figure S3. Photographs of (a) 0.9 g of oligomer electrolyte, (b) 0.1 g of TiO_2 hollow ellipsoidal particles, and composite electrolyte (c) prepared via pouring the oligomer electrolyte onto the hollow particles and (d) after complete mixing them. 0.1 g of TiO_2 hollow ellipsoidal particles has a comparable volume to 0.9 g of oligomer electrolyte. After mixing those components, the volume of the mixture hardly increases compared to that of the oligomer electrolyte.