Supplementary Information belonging to the paper

Investigations in dendrimer space reveal solid and liquid tumor growth-inhibition by original phosphorus-based dendrimers and corresponding monomers and dendrons with ethacrynic acid motifs

Nabil El Brahmi^{a,b}, Serge M. Mignani^{*,c} Joachim Caron^{a,b}, Saïd El Kazzouli^b, Mosto M. Bousmina^b, Anne-Marie Caminade^a, Thierry Cresteil^d, Jean-Pierre Majoral^{*,a}

^a Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4. France.

^b Euro-Mediterranean University of Fez, Route de Sidi Hrazem, Fès Shore, 30070 Fès, Morocco.

^c Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, 45, rue des Saints Pères, 75006 Paris, France.

^{*d*} IPSIT, IFR141, Université Paris Sud, 5 rue Jean Baptiste Clément, 92290 Chatenay-Malabry, France.

Monomeric and dendritic ethacrynic acid derivatives

The syntheses were carried out using standard high vacuum and dry-argon techniques. All chemicals were purchased from Acros, Aldrich, Fluka, and used without further purification. The solvents were freshly dried and distilled according to standard procedures prior to use.

¹H, ¹³C, and ³¹P NMR spectra were recorded with Bruker AV300, DPX300, AV400, spectrometers. All ¹³C NMR and ³¹P NMR spectra were generally recorded decoupled {¹H}. Fourier transformed infrared (FTIR) spectra were obtained with a Perkin–Elmer Spectrum 100 FT-IR spectrometer on neat samples (ATR FT-IR) or in solutions. Mass spectrometry was carried out with a Thermo Fisher DS QII (DCI/NH₃ or DCI/CH₄).

Synthesis of <u>1</u>3

13

Procedure: To a mixture of tyramine (136 mg, 1 mmol) and ethacrynic acid (300 mg, 1 mmol) in dry DMF (8 mL) were added at room temperature EDCI (230 mg, 1.2 mmol) and a catalytic amount of DMAP. The reaction mixture was stirred overnight at room temperature. Ethyl acetate (150 mL) was added and the organic layer was washed with water (2 × 50 mL) and brine (3 × 50 mL), dried over anhydrous MgSO₄ and then concentrated under reduced pressure. The crude product was purified by flash chromatography (DCM/EtOAc 90:10 to 80:20) to give the desired compound **13** as a white powder.

Yield = 60%. ¹H NMR (CDCl₃; 300 MHz), δ (ppm): 1.17 (t, ${}^{3}J_{HH}$ = 7.4 Hz, 3H, C₁₇H₃), 2.49 (q, ${}^{3}J_{HH}$ = 7.4 Hz, 2H, C₁₆H), 2.81 (t, ${}^{3}J_{HH}$ = 6.6 Hz, 2H, C₅H), 3.65 (q, ${}^{3}J_{HH}$ = 6.6 Hz, 2H, C₆H), 4.56 (s, 2H, C₈H), 5.61 (s, 1H, C₁₅H), 6.00 (s, 1H, C₁₅H), 6.64 (s, 1H, NH), 6.83 (d, ${}^{3}J_{HH}$ = 8.6 Hz, 1H, C₁₀H), 6.87 (d, ${}^{3}J_{HH}$ = 8.7 Hz, 2H, C₂H), 7.13 (d, ${}^{3}J_{HH}$ = 8.7 Hz, 2H, C₃H), 7.18 (d, ${}^{3}J_{HH}$ = 8.6 Hz, 1H, C₁₁H). ¹³C {¹H} NMR (CDCl₃; 75 MHz), δ (ppm): 12.4 (s, C₁₇), 23.4 (s, C₁₆), 34.7 (s, C₅), 40.2 (s, C₆), 68.0 (s, C₈), 110.4 (s, C₂), 115.8 (s, C₁₀), 122.8 (s, C₁₂),127.1 (s, C₁₁), 128.7 (s, C₁₅), 129.5 (s, C₄), 129.6 (s, C₃), 131.4 (s, C₁₁'), 133.9 (s, C₁₀'), 150.2 (s, C₁₄), 154.4 (s, C₁), 154.8 (s, C₉), 166.9 (s, C₇), 196.2 (s, C₁₃).<u>HRMS (+ESI)</u> *m/z*: [M+H]⁺ = 422.0929 ; **IR (neat):** *ν* = 3404 (NH), 3316 (OH), 1661 (C=O) cm⁻¹

Synthesis of <u>14</u>

Procedure: To a mixture of phenolpiperazine (190 mg, 1.07 mmol) and ethacrynic acid (307 mg, 1.01 mmol) in dry DMF (6 mL) were added at room temperature EDCI (230 mg, 1.2 mmol) and a catalytic amount of DMAP. The reaction mixture was stirred overnight at room temperature. Ethyl acetate (150 mL) was added and the organic layer was washed with water (2×50 mL) and brine (3×50 mL), dried over anhydrous MgSO₄ and then concentrated under reduced pressure. The crude product was purified by flash chromatography (DCM/EtOAc 90:10 to 80:20) to give **14** as a yellow powder.

Yield = 60 %. ¹H NMR (CDCl₃; 400 MHz), δ (ppm): 1.16 (t, ${}^{3}J_{HH}$ = 7.4 Hz, 3H, C₁₇H₃), 2.48 (q, ${}^{3}J_{HH}$ = 7.4 Hz, 2H, C₁₆H), 2.99-3.06 (m, 2H, C₅H), 3.06-3.12 (m, 2H, C⁵₅H), 3.76-3.84 (m, 4H, C₆H and C⁶₆H), 4.88

(s, 2H, C₈H), 5.54 (s, 1H, OH), 5.61 (s, 1H, C₁₅H), 5.95 (s, 1H, C₁₅H), 6.79 (d, ${}^{3}J_{HH} = 9.0$ Hz, 2H, C₂H), 6.84 (d, ${}^{3}J_{HH} = 9.0$ Hz, 2H, C₃H), 7.00 (d, ${}^{3}J_{HH} = 8.6$ Hz, 1H, C₁₀H), 7.16 (d, ${}^{3}J_{HH} = 8.6$ Hz, 1H, C₁₁H). 13 C {¹H} NMR (CDCl₃ ; 101 MHz), δ (ppm): 12.4 (s, C₁₇), 23.4 (s, C₁₆), 42.4 (s, C₆), 45.7 (s, C'₆), 50.9 (s, C₅), 51.5 (s, C'₅), 68.7 (s, C₈), 110.37 (s, C₁₀), 116.0 (s, C₂), 119.3 (s, C₃), 122.8 (s, C'₁₀), 127.1 (s, C₁₁), 128.8 (s, C₁₅), 131.4 (s, C'₁₁), 133.8 (s, C₁₂), 144.9 (s, C₁), 150.2 (s, C₁₄), 150.7 (s, C₄), 155.2 (s, C₉), 165.3 (s, C₇), 195.8 (s, C₁₃).<u>HRMS (+ESI)</u> m/z: [M+H]⁺ = 463.1188 ; <u>IR (neat)</u>: v = 3325 (OH), 1654 (C=O), 1645 (C=C) cm⁻¹

Synthesis of 15, 16 and 17.

General procedure

A dendrimer **Gn** (100 mg, 0.055 mmol, n=1), (100 mg, 0.021 mmol, n=2) or (100 mg, 0.01 mmol, n=3), was dissolved in THF (20 ml), and then appropriate masses of phenol **14** (321 mg, 0.693 mmol, n=1), (245 mg, 0.53 mmol, n=2) or (218 mg, 0.47 mmol, n=3), and cesium carbonate (430 mg, 1.32 mmol, n=1), (328 mg, 1.01mmol, n=2), (312 mg, 0.96 mmol, n=3), were added. The reaction mixture was stirred overnight at room temperature, and then centrifuged. The solution was concentrated and precipitated two times in pentane/ Et_2O (9/1). The product was filtered and dried under vacuum to give **15** (generation 1), **16** (generation 2) or **17** (generation3) as white powders.

15

Yield = 86 %. ³¹P {¹H} RMN (CD₂Cl₂; 162 MHz), δ (ppm): 8.59 (s, P₀), 64.22 (s, P₁). ¹H NMR (CD₂Cl₂; 400 MHz), δ (ppm): 1.15 (t, ³J_{HH} = 7.4 Hz, 36H, C₁¹⁷H₃), 2.46 (q, ³J_{HH} = 7.4 Hz, 24 H, C₁¹⁶H₂), 3.06 (s, 24H, C₁⁵H₂), 3.12 (s, 24H, C'₁⁵), 3.27 (d, ³J_{HP} = 10.0 Hz, 18H, CH₃N-P₁), 3.55-3.78 (m, 48H, C₁⁶ and C'₁⁶), 4.86 (s, 24H, C₁⁸H₂), 5.60 (s, 12H, C₁¹⁵H₂), 5.96 (s, 12H, C₁¹⁵H₂), 6.81 (d, ³J_{HH} = 7.9 Hz, 24H, C₁³H), 6.96 (d, ³J_{HH} = 8.6 Hz, 12H, C₁¹⁰H), 7.01 (d, ³J_{HH} = 8.5 Hz, 12H, C₀²H₂), 7.09 (d, ³J_{HH} = 7.9Hz, 24H, C₁²H), 7.18 (d, ³J_{HH} = 8.6 Hz, 12H, C₁¹¹H), 7.62-7.71 (m, 18H, C₀³H, C₀H=N).¹³C {¹H} NMR (CD₂Cl₂; 101 MHz), δ (ppm): 12.21 (s, C₁¹⁷), 23.4 (s, C₁¹⁶), 33.02 (d, ²J_{CP} = 11.5 H, CH₃N-P₁), 41.83 (s, C₁⁶), 45.05 (s, C'₁⁶), 49.29 (s, C₁⁵), 49.85 (s, C'₁⁵), 68.22 (s, C₁⁸), 110.87 (s, C₁¹⁰), 117.33 (s, C₁³), 121.33 (s, C₀²), 121.90 (d, ³J_{CP} = 4.1 Hz,

 C_1^{2}), 122.51 (s, C_1^{12}), 127.06 (s, C_1^{11}), 128.22 (s, C_0^{3}), 128.54 (s, C_1^{15}), 131.00 (s, C_1^{9}), 132.49 (s, C_0^{4}), 133.52 (s, $C_1^{'10}$), 138.46 (d, ${}^{3}J_{CP}$ =14.5, C_0 H=N), 143.98 (d, ${}^{2}J_{CP}$ = 7.2 Hz, C_1^{1}), 148.56 (s, C_1^{4}), 150.14 (s, C_1^{14}), 151.13 (s, C_0^{1}) 155.41 (s, $C_1^{'11}$), 164.79 (s, C_1^{7}), 195.48 (s, C_1^{13}).

16

Yield = 83 %. ³¹P {¹H} RMN (CD₂Cl₂; 121 MHz), δ (ppm): 8.44 (s, P₀), 62.48 (s, P₁), 64.40 (s, P₂). ¹H NMR (CD₂Cl₂; 400 MHz), δ (ppm): 1.14 (t, ³J_{HH} = 7.4 Hz, 72H, C₂¹⁷H₃), 2.44 (q, ³J_{HH} = 7.3 Hz, 48H, C₂¹⁶H₂), 3.06 (s, 48H, C₂⁵H₂), 3.12 (s, 48H, C'₂⁵), 3.17-3.31 (m, 54H, CH₃N-P_{1,2}), 3.55-3.78 (m, 96H, C₂⁶ and C'₂⁶), 4.84 (s, 48H, C₂¹⁰H and C₀²H₂), 7.06 (d, ³J_{HH} = 7.9Hz, 24H, C₂¹⁻H), 7.15 (d, ³J_{HH} = 7.9 Hz, 48H, C₂^{3H}H), 6.90-6.99 (m, 36H, C₂¹⁰H and C₀²H₂), 7.06 (d, ³J_{HH} = 7.9Hz, 24H, C₂²⁻H), 7.15 (d, ³J_{HH} = 8.5 Hz, 12H, C₂¹¹H), 7.20 (d, ³J_{HH} = 7.6 Hz, 24H, C₁²H), 7.55-7.72 (m, 54H, C₀³⁻H, C₁³⁻H, C₀H=N and C₁H=N). ¹³C {¹H} NMR (CD₂Cl₂; 101 MHz), δ (ppm): 12.23 (s, C₂¹⁷), 23.39 (s, C₂¹⁶), 32.72-33.12 (m, CH₃N-P_{1,2}), 41.82 (s, C₂⁶), 45.02 (s, C'₂⁶), 49.25 (s, C₂⁵), 49.78 (s, C'₂⁵), 68.14 (s, C₂⁸), 110.88 (s, C₂¹⁰), 117.29 (s, C₂³), 121.24 (d, ³J_{CP} = 2.3 Hz, C₀²), 121.74 (d, ³J_{CP} = 4.0 Hz, C₁²), 121.94 (d, ³J_{CP} = 3.9 Hz, C₂²), 122.51 (s, C₂¹²), 127.06 (s, C₂¹¹), 128.18 (s, C₁³), 128.32 (s, C₀³), 128.57 (s, C₂¹⁵), 130.96 (s, C₂⁹), 132.22 (s, C₀⁴), 132.58 (s, C₁⁴), 133.47 (s, C₂^{'10}), 138.61 (d, ³J_{CP} = 12.9 Hz, C₁¹H=N), 139.35 (s, C₀H=N), 143.84 (d, ²J_{CP} = 7.2 Hz, C₂¹), 148.55 (s, C₂⁴), 150.11 (s, C₂¹⁴), 151.15 (d, ²J_{CP} = 7.0 Hz, C₀¹ and C₂¹), 155.41 (s, C₂^{'11}), 164.76 (s, C₂⁷), 195.47 (s, C₂¹³).

17

Yield = 81 %. ³¹P {¹H} RMN (CD₂Cl₂; 121 MHz), δ (ppm): 7.95 (s, P₀), 62.58 (s, P₁), 64.26 (s, P_{2,3}). ¹H NMR (CD₂Cl₂; 400 MHz), δ (ppm): 1.11 (t, ³J_{HH} = 7.4 Hz, 144H, C₃¹⁷H₃), 2.42 (q, ³J_{HH} = 7.3 Hz, 96H, C₃¹⁶H₂), 3.02 (s, 96H, C₃⁵H₂), 3.08 (s, 96H, C'₂⁵H₂), 3.18-3.35 (m, 126H, CH₃N-P_{1,2,3}), 3.57-3.70 (m, 192H,

 $C_2{}^{6}H_2$ and $C'_2{}^{6}H_2$), 4.82 (s, 96H, $C_3{}^{8}H_2$), 5.56 (s, 48H, $C_3{}^{15}H_2$), 5.93 (s, 48H, $C_3{}^{15}H_2$), 6.79 (d, ${}^{3}J_{HH}$ = 7.9 Hz, 96H, $C_3{}^{3}H$), 6.91 (d, ${}^{3}J_{HH}$ = 8.5 Hz, 60H, $C_3{}^{10}H_2$ and $C_0{}^{2}H_2$), 7.06 (d, ${}^{3}J_{HH}$ = 8.3Hz, 24H, $C_3{}^{2}H$), 7.13 (d, ${}^{3}J_{HH}$ = 8.5 Hz, 12H, $C_3{}^{11}H$), 7.21 (d, ${}^{3}J_{HH}$ = 7.6 Hz, 72H , $C_1{}^{2}H$ and $C_2{}^{2}H$), 7.58-7.83 (m, 126H, $C_0{}^{3}H$, $C_1{}^{3}H$, $C_2{}^{3}H$, $C_0{}^{H=N}$, $C_1{}^{H=N}$, $C_2{}^{H=N}$ and $C_1{}^{H=N}$). ${}^{13}C$ { ^{1}H } NMR (CD_2CI_2 ; 101 MHz), δ (ppm): 12.24 (s, $C_3{}^{17}$), 23.40 (s, $C_3{}^{16}$), 32.67-33.17 (m, $CH_3N-P_{1,2,3}$), 41.82 (s, $C_3{}^{6}$), 44.99 (s, $C'_3{}^{6}$), 49.23 (s, $C_3{}^{5}$), 49.76 (s, $C'_3{}^{5}$), 68.09 (s, $C_3{}^{8}$), 110.89 (s, $C_3{}^{10}$), 117.28 (s, $C_3{}^{3}$), 121.20 (s, $C_0{}^{2}$), 121.77 (s, $C_1{}^{2}$ and $C_2{}^{2}$), 121.91 (d, ${}^{3}J_{CP}$ = 3.5 Hz, $C_2{}^{3}$), 122.45 (s, $C_3{}^{12}$), 127.06 (s, $C_3{}^{11}$), 128.18 (s, $C_2{}^{3}$), 128.35 (s, $C_1{}^{3}$), 128.47 (s, $C_0{}^{3}$), 128.60 (s, $C_3{}^{15}$), 130.93 (s, $C_3{}^{9}$), 132.22 (s, $C_0{}^{4}$), 132.58 (s, $C_1{}^{4}$ and $C_2{}^{4}$), 133.47 (s, $C_3{}'^{10}$), 138.70 (d, ${}^{3}J_{CP}$ = 12.5 Hz, $C_2H=N$), 139.21-139.76 (m, $C_0H=N$ and $C_1H=N$), 143.88 (d, ${}^{2}J_{CP}$ = 7.3 Hz, $C_3{}^{1}$), 148.52 (s, $C_3{}^{4}$), 150.08 (s, $C_3{}^{14}$), 151.14-151.35 (m, $C_0{}^{1}$, $C_1{}^{1}$ and $C_2{}^{1}$), 155.42 (s, $C_3{}'{}^{11}$), 164.75 (s, $C_3{}^{7}$), 195.46 (s, $C_3{}^{13}$).

Synthesis of 18 and 19.

Procedure: To a solution of **13** (200 mg, 0.47 mmol) or **14** (205 mg, 0.47 mmol), in dry DCM (10 mL) were added triethylamine (109 μ L, 79 mg, 0.78 mmol) and POCl₃ (12 μ L, 20 mg, 0.14 mmol). The reaction mixture was stirred overnight at room temperature and concentrated under reduced pressure. The crude product was purified by flash chromatography (DCM/THF 90:10 to 80:20) to give **18** or **19** as white powders.

18

Yield = 35 %. ³¹P {¹H} NMR (CDCl₃; 162 MHz), δ (ppm): -17.5 (s, P=O). ¹H NMR (CDCl₃; 400 MHz), δ (ppm): 1.13 (t, ³J_{HH} = 7.4 Hz, 9H, C₁₇H), 2.45 (q, ³J_{HH} = 7.4 Hz, 6H, C₁₆H), 2.86 (t, ³J_{HH} = 6.6 Hz, 6H, C₅H), 3.63 (q, ³J_{HH} = 6.6 Hz, 6H, C₆H), 4.53 (s, 6H, C₈H), 5.55 (s, 3H, C₁₅H), 5.93 (s, 3H, C₁₅H), 6.76-6.83 (m, 6H, NH and C₁₀H), 17.14 (d, ³J_{HH} = 8.5 Hz, 3H, C₁₁H), 7.17-7.23 (s, 12H, C₂H, C₃H). ¹³C {¹H} NMR (CDCl₃; 75 MHz), δ (ppm): 12.5 (s, C₁₇), 23.5 (s, C₁₆), 35.0 (s, C₅), 40.2 (s, C₆), 68.2 (s, C₈), 110.9 (s, C₁₀), 120.5 (d, ³J_{CP} = 4.9 Hz, C₂), 123.0 (s, C₁₂), 127.3 (s, C₁₁), 128.9 (s, C₁₅), 130.3 (s, C₃), 131.5 (s, C₁₁'), 134.2 (s, C₁₀'), 135.9 (d, ⁵J_{CP} = 1.0 Hz, C₄), 149.4 (d, ²J_{CP} = 7.4 Hz, C₁), 150.3 (s, C₁₄), 154.5 (s, C₉), 166.8 (s, C₇), 195.6 (s, C₁₃). <u>HRMS (+ESI)</u> m/z: [M+H]⁺ = 1311.2081; <u>IR (neat)</u>: v = 3417 (NH), 1664 (C=O) cm⁻¹

Yield = 85 %, ³¹P {¹H} NMR (CDCl₃; 162 MHz); δ (ppm) : -16.1 (s, P=O). ¹H NMR (CDCl₃; 400 MHz), δ (ppm): 1.13 (t, ³*J*_{HH} = 7.4 Hz, 9H, C₁₇H₃), 2.45 (q, ³*J*_{HH} = 7.4 Hz, 6H, C₁₆H), 3.06-3.17 (m, 12H, C₅H and C'₅H), 3.73-3.81 (m, 12H, C₆H and C'₆H), 4.86 (s, 6H, C₈H), 5.58 (s, 3H, C₁₅H), 5.93 (s, 3H, C₁₅H), 6.83-6.86 (m, 6H, C₂H), 6.99 (d, ³*J*_{HH} = 8.6 Hz, 3H, C₁₀H),7.10-7.18 (m, 9H, C₃H and C₁₁H). ¹³C {¹H} NMR (CDCl₃; 101 MHz), δ (ppm): 12.5 (s, C₁₇), 23.6 (s, C₁₆), 42.2 (s, C₆), 45.6 (s, C'₆), 49.9 (s, C₅), 50.6 (s, C'₅), 68.9 (s, C₈), 110.8 (s, C₁₀), 118.1 (s, C₃), 121.0 (d, ³*J*_{CP} = 4.7 Hz, C₂), 122.9 (s, C'₁₀), 127.2 (s, C₁₁), 128.8 (s, C₁₅), 131.6 (s, C'₁₁), 133.9 (s, C₁₂), 144.5 (d, ²*J*_{CP} = 7.3 Hz, C₁), 148.6 (d, ⁵*J*_{CP} = 1.0 Hz, C₄), 150.3 (s, C₁₄), 155.3(s, C₉), 165.3 (s, C₇), 195.9 (s, C₁₃). <u>HRMS (+ESI)</u> *m*/*z*: [M+H]⁺ = 1435.2883; <u>IR (neat)</u>: *v* = 1663 (C=O) cm⁻¹

Synthesis of 20.

Procedure: To a solution of **13** (200 mg, 0.47 mmol), in dry DCM (10 mL) were added triethylamine (109 μ L, 79 mg, 0.78 mmol) and PSCl₃ (15 μ L, 25 mg, 0.15 mmol). The reaction mixture was stirred overnight at room temperature and concentrated under reduced pressure. The crude product was purified by flash chromatography (DCM/EtOAc 62:40) to give **20** as a white powder.

20

Yield = **35** %. ³¹P {¹H} NMR (CDCl₃; **121** MHz), δ (ppm): 53.13 (s, P=S). ¹H NMR (CDCl₃; **300** MHz), δ (ppm): 1.16 (t, ³*J*_{HH} = 7.4 Hz, 9H, C₁₇H), 2.48 (q, ³*J*_{HH} = 7.4 Hz, 6H, C₁₆H), 2.89 (t, ³*J*_{HH} = 6.9 Hz, 6H, C₅H), 3.68 (q, ³*J*_{HH} = 6.9 Hz, 6H, C₆H), 4.56 (s, 6H, C₈H), 5.58 (s, 3H, C₁₅H), 5.96 (s, 3H, C₁₅H), 6.80 (s, NH) 6.83 (d, ³*J*_{HH} = 8.5 Hz, 3H, C₁₀H), 17.16 (d, ³*J*_{HH} = 8.5 Hz, 3H, C₁₁H), 7.23 (s, 12H, C₂H, C₃H). ¹³C {¹H} NMR (CDCl₃; **75** MHz), δ (ppm): 12.4 (s, C₁₇), 23.4 (s, C₁₆), 34.9 (s, C₅), 40.0 (s, C₆), 68.1 (s, C₈), 110.8 (s, C₁₀),

121.4 (d, ${}^{3}J_{CP}$ = 4.8 Hz, C₂), 127.2 (s, C₁₁), 128.8 (s, C₁₅), 130.0 (s, C₃), 122.9 (s, C₁₂), 131.4 (s, C₁₁[']), 134.1 (s, C₁₀[']), 135.9 (d, ${}^{5}J_{CP}$ = 1.9 Hz, C₄), 149.4 (d, ${}^{2}J_{CP}$ = 8.0 Hz, C₁), 150.2 (s, C₁₄), 154.4 (s, C₉), 166.6 (s, C₇), 195.5 (s, C₁₃). <u>HRMS (+ESI)</u> *m/z*: [M+H]⁺ = 1325.8998 ; <u>IR (neat)</u>: *v* = 3409 (NH), 1663 (C=O) cm⁻¹

Synthesis of 21 and 22.

Procedure: To a solution of **13** (108 mg, 0.26 mmol) or **14** (119 mg, 0.26 mmol) in dry DCM, (10 mL) were added triethylamine (68 μ L, 50 mg, 0.5 mmol) and dichloroethylphosphate (14 μ L, 20 mg, 0.12 mmol). The reaction mixture was stirred overnight at room temperature and concentrated under reduced pressure. The crude product was purified by flash chromatography (DCM/THF 90:10 to 80:20) to give **21** or **22** as white powders.

21

Yield = 60%, ³¹P {¹H} NMR (CDCl₃; 162 MHz); δ (ppm): -11.76 (s, P=O). ¹H NMR (CDCl₃; 400 MHz); δ (ppm): 1.16 (t, ³J_{HH} = 7.4 Hz, 6H, C₁₇H₃), 1.40 (t, ³J_{HH} = 6.6 Hz, 3H, C_bH₃), 2.48 (q, ³J_{HH} = 7.4 Hz, 4H, C₁₆H), 2.88 (t, ³J_{HH} = 6.9 Hz, 4H, C₅H), 3.66 (q, ³J_{HH} = 6.8 Hz, 4H, C₆H), 4.30-4.41 (m, 2H, C_aH₂), 4.55 (s, 4H, C₈H), 5.59 (s,1H, C₁₅H), 5.97 (s, 1H, C₁₅H), 6.80 (s, 1H, NH), 6.84 (d, ³J_{HH} = 8.5 Hz, 4H, C₁₀H), 7.18 (d, ³J_{HH} = 8.5 Hz, 2H, C₁₁H), 7.21 (s, 8H, C₂H and C₃H). ¹³C {¹H} NMR (CDCl₃; 101 MHz), δ (ppm) : 12.3 (s, C₁₇), 16.1 (d, ³J_{CP} = 6.8 Hz, C_b), 23.4 (s, C₁₆), 34.8 (s, C₅), 40.0 (s, C₆), 65.5 (d, ²J_{CP} = 6.1 Hz, C_a), 68.0 (s, C₈), 110.7 (s, C₁₀), 120.3 (d, ³J_{CP} = 5.0 Hz, C₂), 122.8 (s, C₁₂), 127.1 (s, C₁₁), 128.7 (s, C₁₅), 130.0 (s, C₃), 131.4 (s, C'₁₁), 134.1 (s, C'₁₀), 135.3 (s, C₄), 149.40 (d, ²J_{CP} = 7.1 Hz, C₁), 150.2 (s, C₁₄), 155.3 (s, C₉), 166.6 (s, C₇), 195.4 (s, C₁₃). <u>HRMS (+ESI)</u> *m*/*z*: [M+H]⁺ = 935.1534 ; <u>IR (neat):</u> ν = 3409 (NH), 1661 (C=O) cm⁻¹

Yield = 52 %, ³¹P {¹H} NMR (CDCl₃; 162 MHz); δ (ppm): -10.9 (s, P=O). ¹H NMR (CDCl₃; 400 MHz), δ (ppm): 1.14 (t, ³*J*_{HH} = 7.4 Hz, 6H, C₁₇H₃), 1.35 (t, ³*J*_{HH} = 7.1 Hz, 3H, C_bH₃), 2.46 (q, ³*J*_{HH} = 7.4 Hz, 4H, C₁₆H), 2.99-3.06 (m, 8H, C₅H and C'₅H), 3.73-3.81 (m, 8H, C₆H and C'₆H), 4.29 (q, ³*J*_{HH} = 7.1 Hz, 2H, C_aH₂), 4.86 (s, 4H, C₈H), 5.58 (s, 2H, C₁₅H), 5.93 (s, 2H, C₁₅H), 6.86 (d, ³*J*_{HH} = 8.6 Hz, 4H, C₂H), 6.99 (d, ³*J*_{HH} = 8.6 Hz, 2H, C₁₀H), 7.10-7.18 (m, 6H, C₃H and C₁₁H). ¹³C {¹H} NMR (CDCl₃; 101 MHz), δ (ppm): 12.5 (s, C₁₇), 16.3 (d, ³*J*_{CP} = 6.6 Hz, C_b), 23.6 (s, C₁₆), 42.3 (s, C₆), 45.6 (s, C'₆), 49.9 (s, C₅), 50.6 (s, C'₅), 65.5 (d, ²*J*_{CP} = 6.3 Hz, Ca), 68.9 (s, C₈), 110.8 (s, C₁₀), 118.2 (s, C₂), 119.3 (s, C₃), 122.9 (s, C'₁₀), 127.2 (s, C₁₁), 128.8 (s, C₁₅), 131.6 (s, C'₁₁), 133.9 (s, C₁₂), 144.6 (d, ²*J*_{CP} = 7.3 Hz, C₁), 148.5 (d, ⁵*J*_{CP} = 1.0 Hz, C₄), 150.3 (s, C₁₄), 155.3 (s, C₉), 165.3 (s, C₇), 195.9 (s, C₁₃). <u>HRMS (+ESI)</u> *m/z*: [M+H]⁺ = 1017.2172 ; <u>IR (neat)</u>: *v* =1663 (C=O) cm⁻¹

Cell culture and proliferation assay. The human cell line KB (nasopharyngeal epidermis carcinoma) was originated from the NCI. Cells were grown in D-MEM medium supplemented with 10% fetal calf serum, in the presence of penicillin, streptomycin and fungizone in 75 cm² flask under 5% CO₂. HL60 (promyelocytic leukemia) and EPC (carp epithelium) cells from ATCC were grown in complete RPMI-1640 medium. Cells were plated in 96-well tissue culture with dendrimers dissolved in DMSO (1% final volume). After 72 h exposure, MTS reagent (Promega) was added and incubated for 3 h at 37°C: the absorbance was monitored at 490 nm and results are expressed as the inhibition of cell proliferation calculated as the ratio [(1-(OD490 treated/OD490 control))×100]. For IC₅₀ determinations (50% inhibition of cell proliferation) experiments were performed in duplicate.