Nanoscale

RSCPublishing

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Received 00th October 2014, Accepted 00th October 2014

DOI: 10.1039/x0xx00000x

www.rsc.org/

Controlled manipulation of Fe₃O₄ nanoparticles in an oscillating magnetic field for fast ablation of microchannel occlusions

Jacque Lynn F. Gabayno,^{*a,b*} Da-Wei Liu,^{*c*} Ming Chang^{*a*},^{*c*} and Yu-Hao Lin^{*c*}

Supplementary Materials

Figure S1. Bright field TEM pictures of the Fe_3O_4 nanoparticles at (a) 25000x and (b) 100,000x magnification. Magnetization vs magnetic field (M-H) curves of the nanoparticles at (c) room temperature and (d) low fields.

Figure S2. Optical tracking of Fe₃O₄ microrod. (a) Configuration of optical and magnetic setup. (b) Agglomerated Fe₃O₄ nanoparticles. (c)-(d) Enhanced images for calculation of linear speed. Dashed blue and red lines indicate the starting and ending positions for the calculation: (c) $dH/dx = 13 \times 10^5$ A m⁻¹ and (d) $dH/dx = 21 \times 10^5$ A m⁻². (e)-(g) Enhanced images for calculation of rotation speed: (e) H = 470 A m⁻¹, (b) H = 720 A m⁻¹, and (c) H = 1100 A m⁻¹.

Video S1 Video of agglomeration and motion control of Fe₃O₄ nanoparticles in an oscillating magnetic field.

Video S1 Video of thrombus removal process at low magnification.

Video S3 Video of thrombus removal process at high magnification.