Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting Information (SI) for:

Carbon-protected bimetallic carbide nanoparticles for highly efficient alkaline hydrogen evolution reaction

Yipu Liu,^a Guo-Dong Li,^a Long Yuan,^a Lei Ge,^a Hong Ding,^a Dejun Wang,^{a,b} and Xiaoxin Zou^{*,a}

^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China

^bDepartment of Chemistry, Tsinghua University, Beijing 100084, China

> E-mail: <u>chemistryzouxx@gmail.com;</u> xxzou@jlu.edu.cn

Catalyst	Loading density(mg/c m ²)	Current density (j)	Overpotential at the corresponding j	Reference	
C-CWC	0.28 mg/cm ²	1 mA/cm ²	33 mV	this work	
		10 mA/cm ²	73 mV	UIIS WULK	
Ni-Mo-alloy on Ti foil	1 mg/cm ²	10 mA/cm ²	80 mV	ACS Catal. 2013, 3, 166.	
30 wt.% Ni loading-	—	10 mA/cm ²	130 mV	Appl. Catal. B: Environ.	
Mo ₂ C nano-rod		10 mA/cm ²	150 mV	2014 , <i>154–155</i> , 232.	
CoP nanowire array	0.92 mg/cm^2	10 mA/cm^2	209 mV	J. Am. Chem. Soc. 2014,	
				dx.doi.org/10.1021/ja503 372r	
Co-NRCNTs	0.28 mg/cm ²	1 mA/cm^2	160 mV	Angew. Chem. Int. Ed.	
		10 mA/cm^2	370 mV	2014 , <i>53</i> , 4372.	
Mo ₂ C	0.8 mg/cm ²	6 mA/cm ²	250 mV	Angew. Chem. Int. Ed. 2012 , <i>51</i> , 12703.	
MoB	2.3 mg/cm ²	5 mA/cm ²	250 mV	Angew. Chem. Int. Ed. 2012 , <i>51</i> , 12703.	
Ni wire	—	10 mA/cm ²	320 mV	ACS Catal. 2013, 3, 166.	
MoS ₂ nanosheets on	—	1 mA/cm ²	310 mV	Adv. Funct. Mater. 2014.	
3D graphene/nickel				DOI:	
structure				10.1002/adfm.20140132 8	
Electrodeposited	0.123 mg/cm ²	1 mA/cm ²	480 mV	J. Am. Chem. Soc. 2013,	
cobalt-sulfide				135, 17699.	
Nitrogen and phosphorus dual-doped	_	1 mA/cm ²	500 mV	<i>ACS Nano</i> 2014 . DOI: 10.1021/nn501434a	
grapnene Amerikawa Mas		10 m A /am ²	540 m V	Cham Cai 2011 2 12(2	
Amorphous MoS _x		10 mA/cm ²	340 m v	<i>Chem. Sci.</i> 2011 , <i>2</i> , 1262.	

Table S1. Comparison of the electrocatalytic activity of C-CWC under basic conditions *vis-à-vis* some representative solid-state HER catalysts recently reported for basic solutions.

Figure S1. XRD patterns of the as-obtained samples that are synthesized *via* simple thermal treatment of a mixture of dicyandiamide, cobalt(II) nitrate hexahydrate ($(Co(NO_3)_2 \cdot 6H_2O)$) and ammonium tungstate hydrate ($(NH_4)_5H_5[H_2(WO_4)_6] \cdot H_2O$) under N₂ atmosphere at different temperatures (*i.e.*, 500, 600, 700, 800 or 900 °C). Details of experimental procedures are provided in experimental section. From the Figure S1, it is seen that the lowest temperature for the formation bimetallic Co-W carbide is 700 °C. The samples obtianed at 700 and 800 °C are dominated by the cubic Co₆W₆C phase, whereas the sample obtianed 900 °C contians both Co₆W₆C and Co₃W₃C. Due to the similar catalytic activities of the samples obtianed at 700, 800, or 900 °C (see their catalytic activities in the main text), our work in this paper is focused on the sample abtained at 700 °C (*i.e.*, C-CWC).

Figure S2. (A) Magnetization as a function of applied magnetic field at 300 K for the C-CWC material. A typical magnetic hysteresis loop with the saturation magnetization of \sim 1.5 emu/g was observed at 300 K, confirming the ferromagnetism of the C-CWC material at room temperature. (B) Photographs showing that the C-CWC material in water can be easily separated by a magnet.

Figure S3. (A) TG curve measured in air for the C-CWC material; (B) XRD pattern of the sample collected after TG measurement with a sample photograph shown in the inset.

A representative method of evaluating the amount of carbon in the CWC@NC sample was given below:

From a TGA plot, we can obtain the initial amount of the sample = a (in g)

and the final amount of the sample = b (in g)

Since, the solid product left after TGA only corresponds to $CoWO_4$, the mol amount (x) of Co or W present in the sample can be calculated as,

mol of Co (x) = b (g)/306.8 (g/mol) where 306.8 (g/mol) = MW of CoWO₄

Since Co and W can only come from the initial material, the mol of Co and W in the initial material should also be x.

If the molar composition of the initial material to be $x/6(Co_6W_6C)@yC$ (where x is already known from previous calculation), the mol (y) of C present in the material can be calculated as,

mol of C (y) = {a (g) – [1470 (g/mol)*x/6 (mol)]}/12.01 (g/mol)

where 1470 (g/mol) and 12.01 (g/mol) are the atomic weights of Co_6W_6C and C, respectively.

Based on the above results, we can obtain the weight percent of C in the material is about (12.01*y/a)*100%.

[Because of the similarity in the atomic weights between C and N, as well as the low N amount in the material, the contribution of nitrogen-dopant is expected to be very small to the above calculation, and hence is ignored for simplification.]

Figure S4. N1s XPS spectrum of C-CWC. In the XPS spectrum, the raw curve (black) is peak-fitted into two curves (indicated by violet and green shaded areas) that correspond to two different types of N species (pyridinic and quaternary), and the sum of the two peak-fitted curves is shown with the red curve.

Figure S5. TEM images of the C-CWC material.

Figure S6. A representative GC result demonstrating the generation of H_2 during catalysis. The detected O_2 and N_2 originate from the air.

Figure S7. Linear sweep voltammetry (LSV) curves obtained with the C-CWC, before (black curve) and after (red curve) 18-hour use under the current–time measurement shown in Figure 4A. The sample loading on the GCE is $\sim 0.28 \text{ mg/cm}^2$ in all the cases, and the obtained current densities are all normalized with the surface area of the GCE.

Table S2. Comparison of the electrocatalytic activity of C-CWC under acidic conditions vis- \hat{a} -vis some representative solid-state HER catalysts recently reported for acidic solutions.

Catalyst	Current density (j)	Overpotential at the	Reference
		corresponding <i>j</i>	
CoP nanoparticles	10 mA/cm^2	70-85 mV	<i>Angew. Chem. Int. Ed.</i> 2014. DOI: 10.1002/ange.201402646
Ni ₂ P	10 mA/cm ²	100 mV	J. Am. Chem. Soc. 2013 , 135, 9267.
Carbon fiber paper- supported CoSe ₂ nanoparticles	10 mA/cm ²	130 mV	J. Am. Chem. Soc. 2014 , 136, 4897.
MoS ₂ /Graphene	10 mA/cm ²	150 mV	J. Am. Chem. Soc. 2011 , 133, 7296.
Oxygen-incorporated or defect-rich MoS ₂ nanosheets	10 mA/cm ²	180 mV	J. Am. Chem. Soc. 2013 , 135, 17881. Adv. Mater. 2013 , 25, 5807.
C-CWC	10 mA/cm ²	200 mV	this work
Amorphous MoS _x	10 mA/cm^2	200 mV	ACS Catal. 2012, 2, 1916.
MS ₂ films (M=Fe, Co,	1 mA/cm ²	160-210 mV	Energy Environ. Sci. 2013, 6,
$Fe_{0.43}Co_{0.57}$)	10 mA/cm^2	190-270 mV	3553.
Exfoliated WS ₂ /MoS ₂	10 mA/cm^2	187-210 mV	Nature Mater. 2013, 12, 850;
nanosheets			Nano Lett. 2013 , <i>13</i> , 6222; <i>J. Am.</i> <i>Chem. Soc.</i> 2013 , <i>135</i> , 10274.
$Co_{0.6}Mo_{1.4}N_2$	10 mA/cm ²	200 mV	J. Am. Chem. Soc. 2013, 135, 19186.
MoB	10 mA/cm ²	215 mV	Angew. Chem. Int. Ed. 2012, 51, 12703.
Mo ₂ C	10 mA/cm ²	215 mV	Angew. Chem. Int. Ed. 2012, 51, 12703.
Mo _{0.06} W _{1.94} C/CB	10 mA/cm ²	220 mV	Angew. Chem. Int. Ed. 2014 , 53, 5131
MSe ₂ films (M=Fe, Co,	1 mA/cm ²	170-230 mV	Energy Environ. Sci. 2013, 6,
$Fe_{0.43}Co_{0.57}$)	10 mA/cm^2	230-250 mV	3553.
g-C ₃ N ₄ /N-doped graphene	10 mA/cm ²	240 mV	<i>Nature Chem.</i> 2014 , <i>5</i> , 3783.
N-rich tungsten carbonitride	10 mA/cm ²	250 mV	Angew. Chem. Int. Ed. 2013 , 52, 13638.
Co-NRCNTs	10 mA/cm ²	260 mV	Angew. Chem. Int. Ed. 2014 , 53, 4372.
WS ₂ /rGO hybrid nanosheets	10 mA/cm ²	260 mV	Angew. Chem. Int. Ed. 2013 , 52, 13751.
Analytical grade WC	10 mA/cm ²	300 mV	Appl. Catal. B: Environ. 2012, 126, 225.
NiMoN _x	1 mA/cm ²	150 mV	Angew. Chem. Int. Ed. 2012, 51, 6131.

Table S3. Comparison of the electrocatalytic activity of C-CWC under neutral conditions vis- \hat{a} -vis some representative solid-state HER catalysts recently reported for neutral solutions.

Catalyst	Current density (j)	Overpotential at the corresponding <i>j</i>	Reference
CoP nanowire array	2 mA/cm^2	65 mV	J. Am. Chem. Soc. 2014,
	10 mA/cm^2	106 mV	dx.doi.org/10.1021/ja503372r
Electrodeposited cobalt-sulfide	2 mA/cm^2	85 mV	J. Am. Chem. Soc. 2013, 135,
	10 mA/cm^2	160 mV	17699.
C-CWC	1 mA/cm ²	75 mV	
	2 mA/cm ²	100 mV	this work
	10 mA/cm ²	224 mV	
Fe, Co, or Ni-doped amorphous MoS ₂	1 mA/cm ²	200-300 mV	Chem. Sci. 2012, 3, 2515.
CuMoS ₄	2 mA/cm ²	210	<i>Energy Environ. Sci.</i> 2012 , <i>5</i> , 8912
Amorphous MoS ₂	2 mA/cm^2	280 mV	Chem. Sci. 2011, 2, 1262
Co-NRCNTs	1 mA/cm^2	330 mV	Angew. Chem. Int. Ed. 2014,
	10 mA/cm^2	540 mV	53, 4372.
Metallic cobalt@cobalt- oxo/hydroxo phosphate	2 mA/cm ²	385 mV	Nature Mater. 2012, 11, 802
Mo ₂ C	1 mA/cm ²	200 mV	Angew. Chem. Int. Ed. 2012, 51, 12703.
МоВ	1 mA/cm ²	250 mV	Angew. Chem. Int. Ed. 2012, 51, 12703.

Figure S8. TEM images of the sample after stability test.

600 °C

900 °C

Figure S9. TEM images of the samples obtained at 500, 600, 800 and 900 °C.

Figure S10. (A) XRD pattern, and (B-D) TEM images of the C-W₂C material.

Figure S11. A typical TEM image of the Co-NRCNTs. The more detailed characterization on this material can be seen in our previous report (*Angew. Chem.* 2014, *126*, 4461-4465).

Figure S12. W4f XPS spectra of C-CWC and C-W₂C.

Figure S13. XRD pattern (top) and SEM image (down) of com- W_2C . The XRD analysis shows that the com- W_2C is dominated by the W_2C phase, with a small amount of WC in the material. In addition, the SEM image of com- W_2C shows that this material is composed of micrometer-sized particles.