Electronic Supplementary Information

Self-assembled 3D Pt/TiO₂ architecture for highperformance photocatalytic hydrogen production

Haiyan Li,^a Hongwen Yu, *a Lei Sun,^a Jiali Zhai^a and Xuerong Han*^b

^aKey Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China ^bFaculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan *To whom correspondence should be addressed. E-mails: yuhw@neigae.ac.cn, hxr@mail.sci.hokudai.ac.jp

Fig. S1 The photograph of the experimental setup of the photocatalytic H_2 production.

The photacatalytic on-line analysis system mainly includes the following sections: a Pyrex reaction cell, a closed gas circulation and evacuation system, Xe lamp, gas chromatography, and computer.

Fig. S2 TEM images of the as-prepared Pt/TiO_2 architecture with different amounts of Pt. (a) 0.2 wt %, (b) 0.3 wt %, (c) 0.5 wt % and (d) 0.8 wt %.

Fig. S3 XRD patterns of the 3D Pt/TiO_2 architecture with different Pt loading amounts.

Fig. S4 Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution curves (inset) of the TiO_2 nanowire (i) and 3D Pt/ TiO_2 architecture (ii).

1		=			0
Sample	<i>^a</i> wt %	S_{BET}^{b}	APS ^c (nm)	$V_{\rm p}^{\rm d} ({\rm cm}^3/{\rm g})$	R ^e (µmol/h)
	(Pt/TiO ₂)	(m ² /g)			
TiO ₂ nanowire	0	12.2	7.38	0.022	3.7
0.2 wt % Pt/TiO ₂	0.19	86.6	13.6	0.25	380
0.3 wt % Pt/TiO ₂	0.28	86.1	14.4	0.26	523
0.4 wt % Pt/TiO ₂	0.36	87.1	13.6	0.25	667
0.5 wt % Pt/TiO ₂	0.41	89.2	13.1	0.25	571
0.8 wt % Pt/TiO ₂	0.59	88.8	12.4	0.24	537

Table S1. Structural parameters of the 3D Pt/TiO₂ architecture with different Pt loading amounts.

^{*a*} wt % determined by ICP-OES data.

 ${}^{b}S_{BET}$ denotes specific surface area.

^{*c*}APS denotes average pore size.

 ${}^{d}V_{p}$ denotes pore volume.

^eR denotes the H₂-production rate of the photocatalyst samples.

Fig. S5 SEM images of the 0.4 wt % Pt/TiO_2 architecture obtained with different reaction times. (a,b) 5 h; (c,d) 10 h.

Fig. S6 TEM images of the products obtained under different reaction conditions. (a) $Ti(OC_4H_9)_4$ +ET+NaOH+H₂PtCl₆, (b) $Ti(OC_4H_9)_4$ +EG+NaOH.

Fig. S7 Time-dependent hydrogen evolution over 0.4 wt % Pt/P25 photocatalyst. Reaction conditions: catalyst, 50 mg; 20 vol % CH_3OH solution, 50 ml; light source, 300 W Xe lamp with a 365 nm filter.

Fig. S8 Cycling performance of 0.4 wt % 3D Pt/TiO₂ architecture.

Fig. S9 Transient photocurrent responses of 0.4 wt % 3D Pt/TiO_2 architecture and nanowire irradiation with UV light for 20 s under an electrode potential of 0 V versus Ag/AgCl.

Movie S1: Hydrogen evolution over 20 mg of 0.4 wt % 3D Pt/TiO₂ photocatalyst in 20 vol % CH₃OH solution irradiated under a 300 W Xe lamp with a 365 nm filter (light intensity was about 20 mW/cm^2).