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Virtual Crystal Approximation

In the virtual crystal approximation (VCA), an effective 2× 2 tight-binding (TB) Hamiltonian

is constructed for a defected graphene supercell. First, on-site energies and hopping parameters

are calculated for all N atoms in the supercell. These quantities are then averaged separately

over graphene’s A and B sublattices. After averaging, these values are inserted into the familiar

TB Hamiltonian on a honeycomb lattice. We limit our discussion to on-site energies and nearest

neighbor hopping only. The on-site energy of the ith atom in the supercell - a C atom or a defect -

is given by

Ei = 〈φi(r−Ri)|H |φi(r−Ri)〉 . (1)

Supercell averages give on-site energies for A and B sublattices. On-site energies are averaged

over A- and B-sublattice separately. Each sublattice contains N/2 atoms in the supercell.
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There are three nearest neighbor vectors δ j. The hopping parameter for the ith atom in the jth

nearest neighbor direction is

t ji = 〈φi+δ j(r− (Ri +δ j)|H |φi(r−Ri)〉 . (3)

The three distinct VCA hopping parameters t j for each direction δ j are calculated as

t j =
1

N/2

N/2

∑
i∈A

∑
k= j

tik. (4)

Here, there are three distinct hopping parameters t j. The sum over k = j serves to pick out the

proper jth direction from all hopping parameters tik. The sum over i averages the hopping param-

eters over the N/2 atoms in the A sublattice. We only sum over the A sublattice to avoid double

counting each hopping integral (i→ k and k→ i). With the VCA hopping parameters, the locations

of the Dirac points are at the roots of the following equation.

f (k) = t1eik·δ1 + t2eik·δ2 + t3eik·δ3 = 0 (5)

Dirac point movement

On the isotropic honeycomb lattice, the Dirac points (D±) exist at the corners of the Brillouin

zone (K and K′), just as in pristine graphene. On the anisotropic honeycomb lattice, the Dirac

points move away from K and K′. When two of the hopping parameters are equal, t1 = t2 6= t3, the
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movement of the Dirac point is in only one direction.1
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(
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− t3

2t1

)
,0
)

(6)

When all three hopping parameters are different, the Dirac points are located at2

Dx,± = ±2
a
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−
√

t2
3 − (t2− t1)2

4t1t2
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t1 + t2
t3

√
t2
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4t1t2

 . (7)

Consider generic VCA hopping parameters given by

t1 = (1− fd)tCC + fdt ′1

t2 = (1− fd)tCC + fdt ′2

t3 = (1− fd)tCC + fdt ′3. (8)

Here, t ′i represents the hopping parameter in the ith direction averaged only for the defect atoms.

By considering the surrounding C atoms, the t ′i enter the VCA with the weight of fd; ordinary C-C

hopping enters with the weight (1− fd).

After inserting Eq. 8 into Eq. 7, the Dirac points are located at

Dx,± = ±2
a

arccos

(
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2
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2
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(9)
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A few test cases illustrate how the Dirac points move in our VCA-TB approximation. When
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t ′1 = t ′2 = t ′3, the Dirac points remain at their original locations,

D± =±
(

4π

3a
,0
)
. (10)

When t ′1 = t ′2 = tCC and t ′3 = 2tCC, the Dirac points are at

D± =±
(

2
a

arccos
(
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2

)
,0
)
. (11)

The case t ′1 = tCC, t ′2 = 2tCC, t ′3 = 3tCC has Dirac points at

Dx,± = ±2
a
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(12)

The defect averaged hopping parameters t ′i depend on the local defect geometry. For the BN

defect shown in Fig. 1, the ti are

t ′1 = (tCC + tBC + tNC)/3

t ′2 = (7tCC + tBC + tNC +3tBN)/12

t ′3 = (5tCC + tBN +3tBC +3tNC)/12. (13)

The two supercells in Fig. 1 have identical defects and, hence, identical t ′i . These two structures

demonstrate a practical realization to test the parameterization of the hopping parameters in Eq. 8

and the movemement of Dirac points based on Eq. 9.
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Figure 1: BN doped defect with t ′1 6= t ′2 6= t ′3.

Intervalley Scattering

Consider Dirac points at the positions in reciprocal space D and D′ = −D. The scattering matrix

element between eigenstates of pristine graphene is given by3

〈s,k|U(r) |s′,k′〉= ∑
G

1
2
(1+ ss′e−iθk,k′ )U(G)δk′,k−G (14)

where θk,k′ is the angle in reciprocal space between the scattered states.

If the impurity potential U(r) has a range much larger than the carbon-carbon distance in

graphene, intervalley scattering does not occur between D and D′ and a band gap can not open.3,4

However, if the perturbing potential has oscillations on the order of the carbon-carbon distance,

U(G) has significant contributions at large |G| - such as some G connecting D and D′ - and band

gap opening can occur. This is the case for structural modifications on graphene. Defects create

a scattering potential somewhere between a slowly varying potential and a perfectly localized δ -

function.

The intervalley scattering matrix element is nonzero only if D and D′ can be connected by

a reciprocal lattice vector. This can only occur if the Dirac points are at certain high symmetry

locations in the Brillouin zone. The Kroenecker-δ in Eq. 14 is satisfied when the Dirac points drift
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to the zone center (Γ) or the points Mi = Gi/2. When D = D′ = Γ mod Gi,

D−D′ = 2Gi. (15)

When D = M = Gi/2 and D′ =−M =−Gi/2,

D−D′ = Gi. (16)
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BN Doping
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Figure 2: Drift of Dirac points depends on defect fraction The drift of the Dirac point in BN
doped graphene increases with defect fraction. Plotted values are the magnitude of the drift. For
split defects, the drift is in the −ky direction, and for pair defects, the drift is in the +ky direction.
Overall balance in on-site energies between A and B sublattices is achieved by switching B and N
dopants between sublattices for different defects. Hence, each BN doped supercell must have an
even number of defects. The ratio of the fitted slopes is 0.63.
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Brillouin zones

The Brillouin zone, high symmetry points, and band structure path of the 5×5 graphene supercell

used in the text are shown below. All plotted band structures belong to hexagonal supercells with

the same shape. Therefore, all Brillouin zones have the same shape and high symmetry points and

differ only in size. Hexagonal supercells are particularly convenient for tracking the movement of

Dirac points in the case of t1 = t2 6= t3 because the Dirac points move in a direction that is along

the band structure path shown here. For an arbitrarily shaped supercell, the Dirac points may move

off of the band structure path and not be visibile in the band structure plot.

Figure 3: BZ of 5×5 graphene supercell.
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