

## **In situ synthesis of NiS/Ni<sub>3</sub>S<sub>2</sub> nanorod composite array on Ni foil as a FTO-free counter electrode for dye-sensitized solar cells**

Yongping Liao, Kai Pan\*, Qingjiang Pan, Guofeng Wang, Wei Zhou, Honggang Fu\*

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education,  
Heilongjiang University, Harbin 150080, People's Republic of China

Tel.: +86 451 8660 9141; fax: +86 451 8667 3647;

E-mail: kaipan@hlju.edu.cn, fuhg@vip.sina.com

### **1. Chemicals**

The sulfur powder (99%, Tianli, Tianjin), nickel foil (99%, Maikun, Shanghai), cetyltrimethyl ammonium bromide (CTAB, 99%, Huishi, Shanghai), aqueous hydrazine (99%, Xilong, Guangdong), the commercial TiO<sub>2</sub> powder (P25, Degussa, Germany) were purchased from standard source. Fluorine doped SnO<sub>2</sub> (FTO) glass (20 Ω/square, Nippon sheet glass, Japan) was used as electrode substrate. The used Ru complex dye was cis-bis(isothiocyanato) bis (2,2' -bipyridyl-4,4' -dicarboxylato) ruthenium (II) bistetrabutylammonium (N719, Solaronix SA, Switzerland). The redox shuttle electrolyte was a blend of 0.1 M LiI (anhydrous, 99%, Acros), 0.05 M I<sub>2</sub> (anhydrous, 99.8%), 0.5 M tertbutylpyridine (99%, Aldrich) and 0.6 M 0.6 M 1-propyl-2, 3-dimethylimidazolium iodide (99%) in acetonitrile (99%, Fluka). All the chemicals were used as received without further purification.

### **2. Synthesis of NiS/Ni<sub>3</sub>S<sub>2</sub> nanorod composite array CEs**

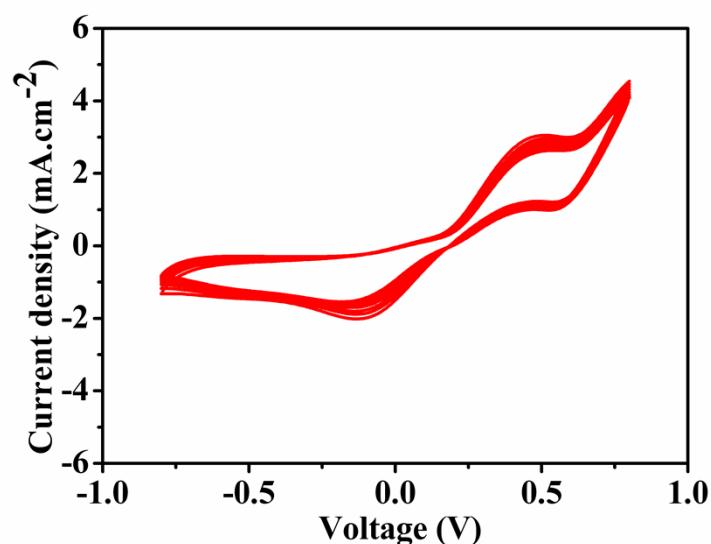
The NiS/Ni<sub>3</sub>S<sub>2</sub> nanorod composite array CEs were prepared similar to the reported procedure<sup>S1</sup>, just adjusting the ratio of Ni foil and sulfur powder. In detail, a piece of Ni foil (thickness: 0.15mm; 1.5 cm×2.5 cm), 2 mmol of sulfur powder and 1.1 mmol of CTAB were introduced into a 40 mL Teflon-lined autoclave, then 28 mL of deionized (DI) water and 2 mL aqueous hydrazine were added, the autoclave was heated at 180 °C for 12 h and then cooled to room temperature. The nickel foil was taken out of solution, washed with ethanol, and finally air-dried for characterization. As a comparison, the hierarchical Ni<sub>3</sub>S<sub>2</sub> CEs was synthesized with the absence of

CTAB and aqueous hydrazine. The NiS CEs on Ni foil were also fabricated via the reported method<sup>S3</sup>. A mirror-like Pt cathode was fabricated by pyrolysis of H<sub>2</sub>PtCl<sub>6</sub> isopropanol solution at 385 °C for 30 min<sup>S2</sup>.

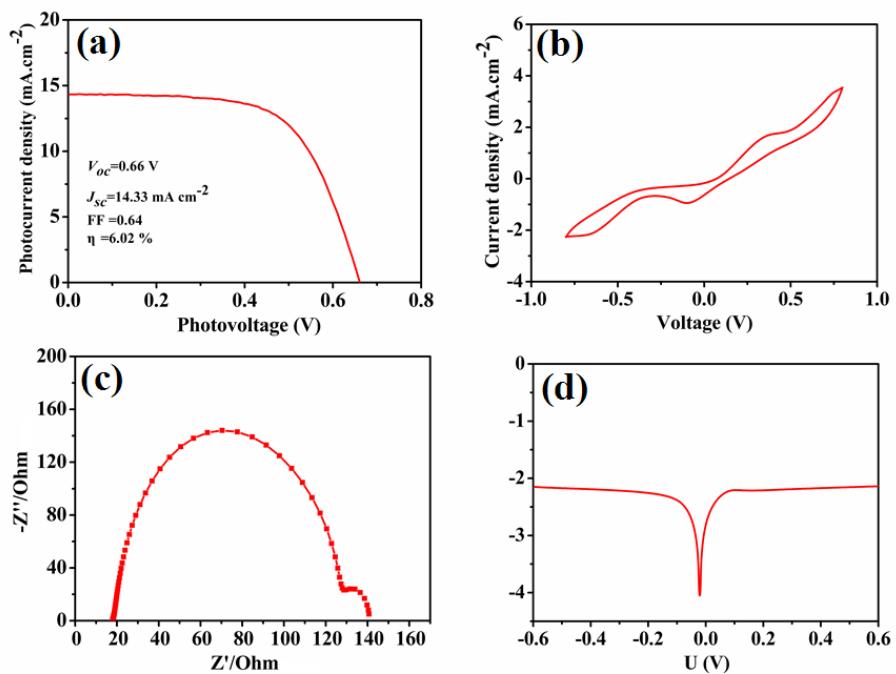
### 3. Assembly of DSSCs


The dye-sensitized TiO<sub>2</sub> photoanodes were prepared according to previous work<sup>S4</sup>. The photoanodes and CEs were adhered together with epoxy resin, then, the redox shuttle electrolyte was injected into the space between the photoanodes and CEs.

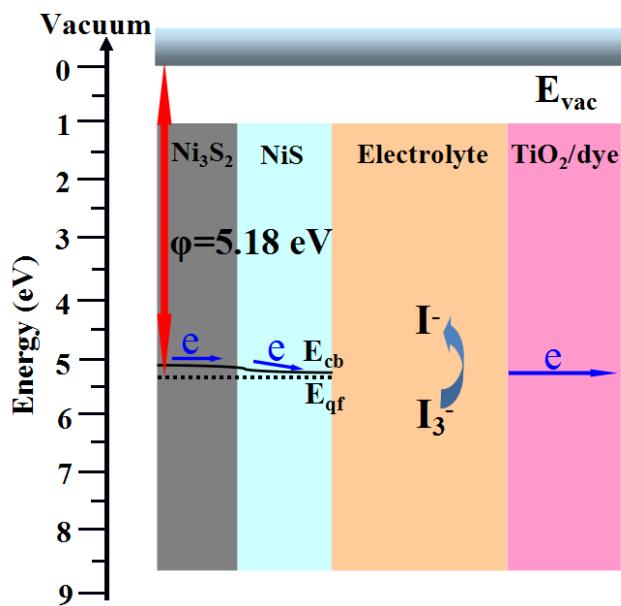
### 4. Characterization


The composition of the composite nanomaterials was studied by X-ray diffraction (XRD), which was recorded using a Rigaku D/max-III B diffractometer with Cu K $\alpha$  ( $\lambda$  = 1.5406 Å). X-ray photoelectron spectroscopy (XPS) analysis was performed on a VG ESCALAB MK II with an Mg K $\alpha$  (1253.6 eV) achromatic X-ray source. Scanning electron microscopy (SEM, Hitachi, S-4800). Transmission electron microscopy (TEM) experiment was performed on a JEM-3010 electron microscope (JEOL, Japan) with an acceleration voltage of 200 kV. Carbon-coated copper grids were used as the sample holders. The scanning Kelvin probe (SKP) measurements (SKP5050 system, Scotland) have been performed at normal conditions of laboratory (in ambient atmosphere). A gold electrode was used as the reference electrode and the air gap between probe and sample was kept at 70 μm.

Photovoltaic measurements were carried out with a solar simulator (Oriel, USA) equipped with an AM 1.5G filter (Oriel, USA). The power of the simulated light was calibrated to 100 mW cm<sup>-2</sup> by using a solar simulator radiometer (Oriel, USA). Photocurrent–photovoltage (J-V) curves were obtained with a BAS100B electrochemical analyzer (Bioanalytical Systems Inc., USA) by applying an external photo-mask of 0.12 cm<sup>2</sup>. The electrochemical impedance spectroscopy (EIS) experiments were conducted with a symmetric cell consisting of two identical CEs by using a computer-controlled potentiostat (Zahner Elektrik, Germany), and carried out by applying sinusoidal perturbations of 10 mV under bias of 0V in the dark, and the frequency ranges from 10 mHz to 1 MHz. The obtained spectra were fitted with ZsimpWin software in terms of appropriate equivalent circuits. The Tafel polarization


measurements were carried out with BAS100B electrochemical analyzer in a symmetric cell with a scan rate of  $50 \text{ mV s}^{-1}$ . The cyclic voltammetry (CV) curves were carried out in a three-electrode system in a nitrogen-purged acetonitrile solution, which contains  $0.1 \text{ M LiClO}_4$ ,  $10 \text{ mM LiI}$  and  $1 \text{ mM I}_2$ , at a scan rate of  $25 \text{ mV s}^{-1}$  with BAS100B electrochemical analyzer, thereinto, Pt worked as an auxiliary electrode, versus the  $\text{Ag}/\text{Ag}^+$  reference electrode.




**Fig. S1** XRD pattern of the NiS



**Fig. S2** Consecutive 20 cyclic voltammograms for the  $\text{NiS}/\text{Ni}_3\text{S}_2$  nanocomposite cathode at a scan rate of  $25 \text{ mV s}^{-1}$ .



**Fig. S3** (a)  $J$ - $V$  characteristics of DSSCs with NiS CEs, (b) Cyclic voltammogram for the NiS CEs at a scan rate of 25 mV s<sup>-1</sup>, (c) Nyquist plot of NiS symmetric cell, (d) Tafel-polarization curve of the NiS symmetric cell.



**Fig. S4** The energy level of NiS/Ni<sub>3</sub>S<sub>2</sub> electrode.

**Table S1.** The reported efficiency of DSSCs based on nickel sulfide counter electrodes.

| CE materials                                         | Method of preparing CE                          | $\eta_{CE}$ (%) | $\eta_{Pt}$ (%) | $\eta_{CE} / \eta_{Pt}$ | Ref.     |
|------------------------------------------------------|-------------------------------------------------|-----------------|-----------------|-------------------------|----------|
| NiS nanoparticles                                    | Drop casted on FTO                              | 6.8             | 5.8             | 1.17                    | S3       |
| NiS nanoparticles                                    | Electrochemical deposition on FTO               | 6.83            | 7.00            | 0.98                    | S5       |
| Ni <sub>3</sub> S <sub>2</sub> nanoparticles         | Drop casting the precursor on FTO then annealed | 7.01            | 7.32            | 0.96                    | S6       |
| NiS nanowall                                         | In-situ grown on Ni foam by hydrothermal method | 8.55            | 7.99            | 1.07                    | S7       |
| NiS nanorods                                         | One-pot hydrothermal method on FTO              | 7.41            | 7.55            | 0.98                    | S8       |
| NiS nanoparticles                                    | In-situ grown on FTO by hydrothermal method     | 6.81            | 6.85            | 0.99                    | S9       |
| {0001} faceted single crystal NiS nanosheet          | In-situ grown on FTO by hydrothermal method     | 9.62            | 7.36            | 1.17                    | S10      |
| NiS / Ni <sub>3</sub> S <sub>2</sub> hybrid nanorods | In-situ grown on Ni foil by hydrothermal method | 7.20            | 7.56            | 0.95                    | Our work |

## References

S1. L. Z. Zhang, J. C. Yu, M. S. Mo, L. Wu, Q. Li and K. W. Kwong, *J. Am. Chem. Soc.*, 2004, **126**, 8116–8117.

S2. A. Hagfeldt and M. Grätzel, *Acc. Chem. Res.*, 2000, **33**, 269–277.

S3. W. S. Chi, J. W. Han, S. Yang, D. Y. Roh, H. Lee and J. H. Kim, *Chem. Commun* 2012, **48**, 9501–9503.

S4. M. K. Nazeerudin, A. Kay, I. Rodicioet, R. H. Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, *J. Am. Chem. Soc.*, 1993, **115**, 6382–6390.

S5. H. C. Sun, D. Qin, S. Q. Huang, X. Z. Guo, D. M. Li, Y. H. Luo and Q. B. Meng, *Energy Environ. Sci.*, 2011, **4**, 2630–2637.

S6. H. K. Mulmudi, S. K. Batabyal, M. Rao, N. Mathews, Y. M. Lam and S. G. Mhaisalkar, *Phys. Chem. Chem. Phys.*, 2011, **13**, 19307–19309.

S7. W. J. Ke, G. J. Fang, H. Tao, P. L. Qin, J. Wang, H. W. Lei, Q. Liu and X. Z. Zhao, *ACS Appl. Mater. Interfaces*, 2014, **6**, 5525–5530.

S8. W. Zhao, T. Q. Lin, S. R. Sun, H. Bi, P. Chen, D. Y. Wan and F. Q. Huang, *J. Mater. Chem. A*, 2013, **1**, 194–198.

S9. J. Yang, C. X. Bao, K. Zhu, T. Yu, F. M. Li, J. G. Liu, Z. S. Li and Z. G. Zou, *Chem. Commun.*, 2014, **50**, 4824–4826.

S10. Y. B. Li, H. F. Wang, H. M. Zhang, P. R. Liu, Y. Wang, W. Q. Fang, H. G. Yang, Y. Li and H. J. Zhao, *Chem. Commun.*, 2014, **50**, 5569–5571.