## **Supporting Information**

## Enhanced light out-coupling efficiency of organic light-emitting diodes with extremely low haze by plasma treated nanoscale corrugation

Ju Hyun Hwang,<sup>a</sup> Hyun Jun Lee,<sup>a</sup> Yong Sub Shim,<sup>a</sup> Cheol Hwee Park,<sup>a</sup> Sun-Gyu Jung,<sup>a</sup> Kyu Nyun Kim,<sup>a</sup> Young Wook Park,<sup>\*b</sup> and Byeong-Kwon Ju<sup>\*a</sup>

<sup>a</sup> Display and Nanosystem Laboratory, College of Engineering, Korea University, Seoul 136-713, Republic of Korea,
\*E-mail: bkju@korea.ac.kr; Fax: +82-3290-3671; Tel: +82-3290-3237
<sup>b</sup> The Institute of High Technology Materials and Devices, Korea University, Seoul 136-713, Republic of Korea,
\*E-mail: zerook@korea.ac.kr; Fax: +82-3290-3671; Tel: +82-3290-3665

## Luminance as a function of current density of the OLEDs

The higher enhancement of the luminance in the OLEDs with NCLE indicates extraction of the waveguide light [1-2]. The luminance of OLEDs as a function of current density is shown in Figure S1. As can be seen, the luminance increases as the height and width of NCLE increases due to the enhanced light out-coupling effect. The luminance of OLEDs are 10186 cd/m<sup>2</sup> (Ref), 11211 cd/m<sup>2</sup> (NCLE 2), and 12402 cd/m<sup>2</sup> (NCLE 3) at 300 mA/cm<sup>2</sup>. The improved performance of the OLEDs with NCLE correspond to enhancements of 10.06% (NCLE 2) and 21.76% (NCLE 3) in luminance.



Figure S1. Device performance of typical OLEDs without NCLE for reference (black), OLEDs with NCLE 2 (blue) and NCLE 3 (red): luminance as a function of current density.

## Reference

- 1. W. H. Koo, W. Youn, P. Zhu, X. -H. Li, N. Tansu, and F. So, *Adv. Funct. Mater.* 2012, **22**, 3454-3459.
- 2. K. Endo and C. Adachi, Appl. Phys. Lett. 2014, 104, 121102.