Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Grain Size Control for Large Bilayer Graphene

Lin Gan¹, Haijing Zhang², Ruizhe Wu¹, Qicheng Zhang¹, Xuewu Ou¹, Yao Ding¹, Ping Sheng² and Zhengtang Luo^{1,*}

¹Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

²Department of Physics and William Mong Institute of Nano Science and Technology,

The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong, China Email: <u>keztluo@ust.hk</u>

Figure S1. a, b) Optical images for continuous graphene sheet composed of large sized graphene grains with 2 hours and 4 hours growth time, respectively. c) The density & size statistics for 2 and 4 hours growth samples. d) Statistics date with error bars.

Figure S2. Plot of Area of nucleus vs. growth time. Before copper was full covered (0-60 min), this part was fitted with Gompertzian sigmoidal growth kinetics¹ according to adsorption-diffusion mechanism and the rest part (60-120 min) was fitted with straight line, represent the mechanism of gas phase penetration mechanism.

Figure S3. a, c) Single crystal graphene grains on oxidized copper (Visualization method treatment). b,d) Bilayer/trilayer grains reside in single crystalline monolayer graphene grains.

Figure S4. Large sized bilayer/few layers on copper substrate (visualization method treatment).

Figure S5. Raman mapping for BL/FLG. a) Optical image for synthesized bilayer graphene. b-d) two dimensional mapping Raman spectrum for 2D, G and D peak intensity, respectively. e) the mapping for ratio of G peak intensity to 2D peak intensity.

Reference:

(1) Celebi, K.; Cole, M. T.; Choi, J. W.; Wyczisk, F.; Legagneux, P.;

Rupesinghe, N.; Robertson, J.; Teo, K. B. K.; Park, H. G. Nano Lett. 2013, 13, 967.