An Effective Non-Covalent Grafting Approach to Functionalizing Individually Dispersed Graphene Sheets with High Grafting Density, Solubility and Electrical Conductivity

Hao-Wang,^a Shu-Guang Bi,^a Yun-Sheng Ye ^{a,*} Yang Xue,^a Xiao-Lin Xie,^a Yiu-Wing Mai,^b

- ^a Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- ^b Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia

E-Mail: ysye@hust.edu.cn

Supplementary Information

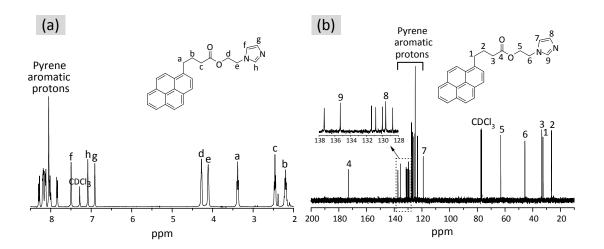


Figure S1. (a) ¹H-NMR and (b) ¹³C-NMR spectra of imidazole pyrene (Im-Py)

Figure S2. ¹H-NMR spectrum of PSO-Py.

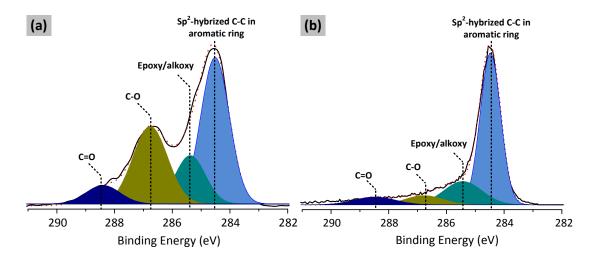


Figure S3. C1s XPS profile of (a) GO and (b) RGO(BnOH).

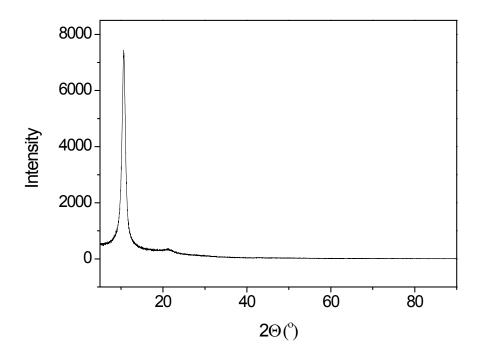


Figure S4. XRD pattern of GO.

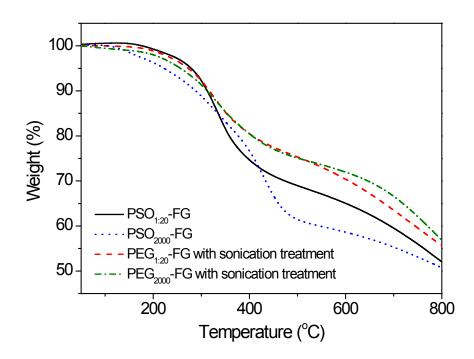
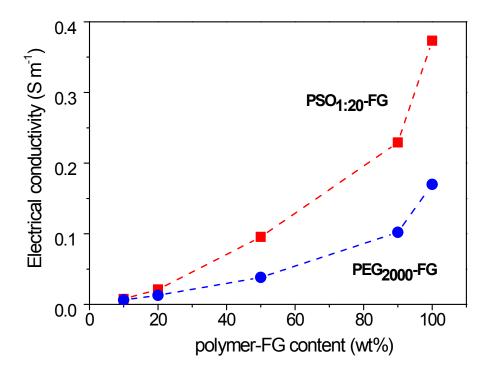



Figure S5. TGA curves of polymer-FG and polymer-FG with sonication treatment.

Figure S6. Electrical conductive curves of polymer-FG and polymer-FG/PVDF films (measured by AC impendence).

$$\overline{A}_{pg} = \frac{M_C W_P}{M_P W_C}$$
 (chains per carbon) Eq.S1

Where: M_C is the relative molar mass of carbon ($M_C = 12 \text{ g mol}^{-1}$), M_P the average molecular weight (M_n) of grafted polymer (calculated from NMR), and W_C the weight fractions of the polymer functionalized reduced graphene oxide backbone (polymer-FG) (not including grafted polymer). W_C and W_P can be readily obtained from the TGA curves of polymer functionalized graphene composite because the polymer functionalized graphene has a weight loss stage below 600 °C, and the decomposed weight fraction above 800 °C is assigned to W_P .