

Table S1 Zeta potential(mV) of DOX-loaded P(ODGal-VCL-MAA) nanogels

	Zeta potential(mV)			
	pH 5.0	pH 6.0	pH 7.4	pH 8.0
DOX- P(ODGal-VCL-MAA)	-1.62	-6.47	-7.46	-11.3

In vitro cytotoxicity of P(ODGal-VCL-MAA) nanogels

Fig. S1. Viability of HepG2 cells exposed with the P(ODGal-VCL-MAA) nanogels $(\pm SD, n = 3)$.

Fig. S2. Viability of Hela cells exposed with the P(ODGal-VCL-MAA) nanogels $(\pm SD, n = 3)$.

As shown in Fig. S1 and Fig. S2, the empty nanogels exhibited nontoxic to both HepG2 and Hela cells, up to a tested concentration of 100 μ g/mL. It should be noted that cell viability in the presence of empty P(ODGal-VCL-MAA) nanogels was greater 100 % up to a copolymer concentration of 100 μ g/mL. This result indicates that the glycopolymers can be used as a biocampatible material.