Supporting Information

Detection of Nanomolar Level of Total Cr [(III) and (VI)] by

Functionalized Gold Nanoparticles and a Smartphone with the Assistance

of Theoretical Calculation Models

Wenwen Chen,^{*a,b*} Fengjing Cao,^{*a*} Wenshu Zheng,^{*a,b*} Yue Tian,^{*a*} Yunlei Xianyu,^{*a,b*} Peng Xu,^{*c*} Wei Zhang,^{*a*} Zhuo Wang,^{*a,**} Ke Deng,^{*d,**} Xingyu Jiang^{*a,**}

^{*a*} Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, China.

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c Nano Measurement laboratory, National Center for Nanoscience and Technology, Beijing 100190, China

^dCAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China

* To whom correspondence should be addressed. E-mail: xingyujiang@nanoctr.cn; wangz@nanoctr.cn; kdeng@nanoctr.cn. Fax: (+86)10-82545631. Phone: (+86)10-82545611.

Table of Contents

Table S1. ΔG of the interactions between the DMSA-Au NPs and various metal ions (1 nm Au NPs as the simplified model).

Table S2. Comparison of the performance of different sensors published for Cr detection.

Fig. S1. The response of DMSA-Au NPs to the other ions containing O atom $(MnO_4^- and ClO_4^-)$.

Fig. S2. Models of the metal ions (M^{n+}) and six water molecules coordinated in the $[M(H_2O)_6]^{n+}$ form.

Fig. S3. DLS measurements for DMSA-Au NPs before (a) and after adding Cr^{3+} (b), $Cr_2O_7^{2-}$ (c), Cr^{3+} and $Cr_2O_7^{2-}$ mixtures (d), the concentration of DMSA-Au NPs is 2.5 nM.

Fig. S4. A dose response curve for Cr ions (Cr^{3+} and $Cr_2O_7^{2-}$ mixtures) detection with and without other interfering ions.

Fig. S5. The plot of A_{650}/A_{525} of AuNPs versus different metal ions at different pH values (pH 3, 5 and 7).

Fig. S6. The pictures of DMSA-Au NPs solution with adding different metal ions taken at different time point (5 min, 10 min, 15 min respectively).

Table S1. ΔG of the interactions between the DMSA-Au NPs and various metal ions (1 nm Au NPs as the simplified model).

Metal	Gibbs free energy				
ions	(kcal mol ⁻¹)				
$Cr_2O_7^{2-}$	-234.21				
Cr ³⁺	-229.90				
Al^{3+}	-209.44				
Fe ³⁺	-202.69				
Ba ²⁺	-91.25				
Ca ²⁺	-89.35				
Cd^{2+}	-100.45				
Co ²⁺	-117.81				
Cu ²⁺	-141.30				
Fe ²⁺	-99.03				
Mg^{2+}	-90.81				
Mn ²⁺	-105.27				
Ni ²⁺	-125.40				
Pb^{2+}	-110.68				
Zn^{2+}	-96.71				
Hg^{2+}	-152.34				

Probe	Targets	Readout	LOD	Pertreatment	Time required for	Rely on large Instrument	ref
					the assay (min)		
Glutathione-CdTe QDs	Cr(VI)	Fluoresence	~ 150 nM		>40	YES	1
Terbium NPs	Cr(VI)	Fluoresence	$\sim 15 \text{ nM}$		5	YES	2
AuNPs-SPE	Cr(VI)	Voltammetric	~ 96 nM		1	YES	3
Ag@Au NPs	Cr(VI)	Colorimetric/UV	100 nM		30	NO	4
Ag NPs	Cr(VI)	Colorimetric/UV	100 nM		5	NO	5
DTT-Au NPs	Cr(VI)	Colorimetric/UV	20 nM		5	NO	6
Tripolyphosphate-Au NPs	Cr(III)	Colorimetric/UV	100 nM		5	NO	7
BP-DTC-Au NPs	Cr(III)	Colorimetric/UV	$\sim 0.6 \; \mu M$		1	NO	8
TNBA-Au NPs	Cr(III),Cr(VI)	Colorimetric/UV	1 µM	Cr(VI) Reduction	>10	NO	9
Citrate-capped Au NPs	Cr(III),Cr(VI)	Colorimetric/UV	4 μΜ	Cr(VI) Reduction	>30	NO	10
DMSA-Au NPs	Cr(III),Cr(VI)	Colorimetric/UV	10 nM		5	NO	This work

 Table S2. Comparison of the performance of different sensors published for Cr detection.

Fig. S1. The response of DMSA-Au NPs to the other ions containing O atom (MnO_4^- and ClO_4^-).

Fig. S2. Models of the metal ions (M^{n+}) and six water molecules coordinated in the $[M(H_2O)_6]^{n+}$ form.

Size Distribution by Intensity

(a)

Size Distribution by Intensity

Fig. S3. DLS measurements for DMSA-Au NPs before (a) and after adding Cr^{3+} (b), $Cr_2O_7^{2-}$ (c), Cr^{3+} and $Cr_2O_7^{2-}$ mixtures (d), the concentration of DMSA-Au NPs is 2.5 nM.

(d)

Fig. S4. A dose response curve for Cr ions (Cr^{3+} and $Cr_2O_7^{2-}$ mixtures) detection with and without other metal ions. The concentration of Cr^{3+} and $Cr_2O_7^{2-}$ mixtures are from 0 nM to 1 μ M (mole ratio is 1:1) and the final concentration of other metal ions is 1 μ M.

Fig. S5. The plot of A_{650}/A_{525} of AuNPs versus different metal ions at different pH values (pH 3, 5 and 7). The concentrations of various metallic ions are 10 μ M and that of Cr³⁺ and Cr₂O₇²⁻ are 1 μ M.

Fig. S6. The pictures of DMSA-Au NPs solution with adding different metal ions taken at different time point (5 min, 10 min, 15 min respectively).

References

- (1) Zhang, L. J.; Xu, C. L.; Li, B. X., Microchim. Acta 2009, 166, 61-68.
- (2) Wang, L.; Bian, G. R.; Dong, L.; Xia, T. T.; Hong, S.; Chen, H. Q., A-Molec. Biomolec. Spectr. 2006, 65, 123-126.
- (3) Liu, G. D.; Lin, Y. Y.; Wu, H.; Lin, Y., Environ. Sci. Technol. 2007, 41, 8129-8134.
- (4) Xin, J. W.; Zhang, F. Q.; Gao, Y. X.; Feng, Y. Y.; Chen, S. G.; Wu, A. G., Talanta 2012, 101, 122-127.

(5) Ravindran, A.; Elavarasi, M.; Prathna, T. C.; Raichur, A. M.; Chandrasekaran, N.; Mukherjee, A., Sens. Actuator B-Chem. 2012, 166, 365-371.

(6) Tan, F.; Liu, X.; Quan, X.; Chen, J. W.; Li, X. N.; Zhao, H. X., Anal. Methods 2011, 3, 343-347.

(7) Xin, J. W.; Miao, L. J.; Chen, S. G.; Wu, A. G., Anal. Methods 2012, 4, 1259-1264.

(8) Zhao, L.; Jin, Y.; Yan, Z. W.; Liu, Y. Y.; Zhu, H. J., Anal. Chim. Acta 2012, 731, 75-81.

(9) Lai, Y. J.; Tseng, W. L., Analyst 2011, 136, 2712-2717.

(10) Liu, Y.; Wang, X. X., Anal. Methods 2013, 5, 1442-1448.