
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for Nanoscale.

Monolithic multiscale bilayer inverse opal electrodes for dyesensitized solar cell applications

Jung Woo Lee and Jun Hyuk Moon*

Department of Chemical Biomolecular Engineering, Sogang University

Fig. S1 Raman spectrum of the bilayer TiO_2 IO film. The peaks at 144 cm⁻¹, 197 cm⁻¹, and 633 cm⁻¹ correspond to the E_g modes, the peak at 88 cm⁻¹ corresponds to the B_{1g} mode, and the peak at 514 cm⁻¹ corresponds to a doublet of the A_{1g} and B_{1g} modes of the anatase phase of TiO_2 .

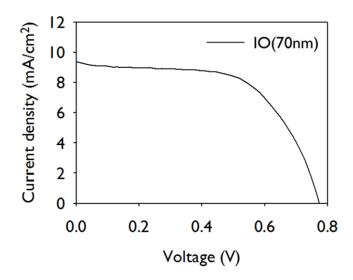
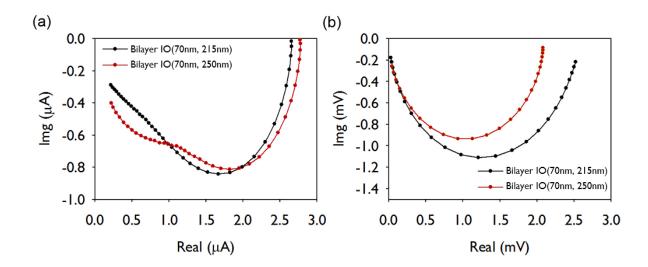



Fig. S2 J-V curves of DSSCs comprising single TiO₂ IO film.

Fig. S3 (a) Intensity-modulated photocurrent and (b) intensity-modulated photovoltage responses of DSCs based on bilayer IO TiO₂ electrodes.