## **Supporting Information**

## Sodium Ion Storage Properties of WS<sub>2</sub>-Decorated Three-

## **Dimensional Reduced Graphene Oxide Microspheres**

Seung Ho Choi and Yun Chan Kang\*

Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

\*Corresponding author. Fax: (+82) 2-928-3584.

E-mail address: yckang@korea.ac.kr

## **Experimental Section**

Synthesis method. Graphene oxide (GO) was synthesized using a modified Hummer's method. The as-obtained GO was redispersed in distilled water and exfoliated by ultrasonication to generate GO sheets, and 500 mL of the exfoliated GO solution (1 mg ml<sup>-1</sup>) was added to 1.5 g of ammonium tungstate hydrate. Then, 3.0 g of 100 nm-sized PS nanobeads was added to the solution of GO sheets and W salt. The resulting solution was dispersed in distilled water by ultrasonication. WO<sub>3</sub>-3D RGO microspheres were directly prepared by ultrasonic spray pyrolysis at 800°C. A quartz reactor of length 1200 mm and diameter 50 mm was used, with a nitrogen flow rate (carrier gas) of 5 L min<sup>-1</sup>. The WO<sub>3</sub>-3D RGO microspheres were sulfidated at 400 °C for 12 h in the presence of 10% H<sub>2</sub>/Ar mixture gas with thiourea as a sulfur source. An alumina boat containing the WO<sub>3</sub>-3D RGO microspheres powders was loaded into a larger alumina boat with a cover. A thiourea powder was loaded on the outside of the small alumina boat for complete sulfidation of the WO<sub>3</sub>-3D RGO microspheres. Decomposition of the melted thiourea under hydrogen/argon mixture gas supplied as the carrier gas produced hydrogen sulfide gas. Finally, the WS<sub>2</sub>-3D RGO microspheres were produced by sulfidation of the WO<sub>3</sub>-3D RGO microspheres thanks to the hydrogen sulfide gas continuously generated by thiourea. The 3D RGO, WO<sub>3</sub>, WS<sub>2</sub>, and WS<sub>2</sub>-RGO microspheres were also prepapred for comparison. The bare WO<sub>3</sub> and WO<sub>3</sub>-RGO powders were directly prepared by spray pyrolysis from the spray solutions with and without GO sheets, respectively. The bare WS<sub>2</sub> and WS<sub>2</sub>-RGO powders were obtained by sulfidation process of bare WO<sub>3</sub> and WO<sub>3</sub>-RGO powders, respectively. The 3D RGO microspheres were directly prepared by spray pyrolysis from the spray solution with GO sheets and PS nanobeads.

*Characterizations*. The crystal structures of the microspheres were investigated by X-ray diffractometry (XRD, X'pert PRO MPD), using Cu K $\alpha$  radiation ( $\lambda$  = 1.5418 Å). Morphological features were investigated using field-emission scanning electron microscopy (FE-SEM, Hitachi S-4800) and high-resolution transmission electron microscopy (HR-TEM, JEM-2100F) at a working voltage of 200 kV. The specific surface areas of the microspheres were calculated from a Brunauer–Emmett–Teller (BET) analysis of nitrogen adsorption measurements (TriStar 3000). The microspheres were also investigated using X-ray photoelectron spectroscopy (XPS, ESCALAB-210) with Al K $\alpha$  radiation (1486.6 eV). Thermal gravimetric analysis (TGA, SDT Q600) was performed in air at a heating rate of 10°C min<sup>-1</sup> to determine the amount of carbon in the microspheres.

*Electrochemical measurements*. The capacities and cycling properties of the WS<sub>2</sub>-3D RGO and WO<sub>3</sub>-3D RGO microspheres were determined using 2032-type coin cells. The electrodes were prepared from a mixture containing 70 wt% active material, 20 wt% Super P, and 10 wt% sodium carboxymethyl cellulose (Na-CMC) binder. Sodium metal and microporous polypropylene film were used as a counter electrode and separator, respectively. The electrolyte was a solution of 1 M NaClO<sub>4</sub> (Aldrich) in a 1:1 volume mixture of ethylene carbonate/dimethyl carbonate (EC/DMC) to which 5 wt% fluoroethylene carbonate was added. The charge-discharge characteristics of the samples were determined by cycling in the potential range 0.001–3.0 V at fixed current densities. Cyclic voltammetry (CV) was carried out at a scan rate of 0.1 mV s<sup>-1</sup>. The dimensions of the negative electrode were 1 cm × 1 cm and the mass loading was approximately 1.4 mg cm<sup>-2</sup>. Electrochemical impedance was measured using electrochemical impedance spectroscopy (EIS) over a frequency range of 0.01 Hz–100 kHz.



**Fig. S1** Morphologies of the WO<sub>3</sub>-3D RGO microspheres obtained at a sulfidation temperature of 200°C. a,b) FE-SEM images, c,d) TEM images, and e) elemental mapping images of W, S, O, and C components.



Fig. S2 Morphologies of the  $WS_2$ -3D RGO microspheres obtained at a sulfidation temperature of 600°C. a,b) FE-SEM images, c,d) TEM images, and e) elemental mapping images of W, S, and C components.



Fig. S3 TG curve of the  $WS_2$ -3D RGO microspheres.



Fig. S4 High resolution TEM images of the  $WS_2$ -3D RGO microspheres obtained after first discharge process to (a) 0.7 V and (b) 0.01 V.



**Fig. S5** Charge and discharge curves of the microspheres at a current density of 200 mA g<sup>-1</sup>. a) WO<sub>3</sub>-3D RGO, b) WS<sub>2</sub>-3D RGO, c) WS<sub>2</sub>-RGO, d) Bare WS<sub>2</sub>, e) bare WO<sub>3</sub>, and f) 3D RGO.



Fig. S6 Electrochemical impedance spectroscopy (EIS) of the  $WS_2$ -3D RGO and bare  $WS_2$  microspheres.



**Fig. S7** Cycling performances and charge/discharge curves of the microspheres obtained at sulfidation temperatures of 200 °C and 600 °C. a) cycling performances and b) first and second cycle curves.



Fig. S8 TEM images of the  $WS_2$ -3D RGO microsphere obtained after rate performance test.

| <b>Table S1</b> – $Na^+$ storage properties of various $WS_2$ and $MoS_2$ materials on copper foil. |                                        |                                                                                                                                           |              |
|-----------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Typical examples                                                                                    | Synthesis                              | Electrochemical properties                                                                                                                | Ref          |
| WS <sub>2</sub> @graphene nanocomposites                                                            | Hydrothermal approach                  | 340 mA h g <sup>-1</sup> after 500 cycles at 20 mA g <sup>-1</sup><br>150 mA h g <sup>-1</sup> after 200 cycles at 320 mA g <sup>-1</sup> | [1]          |
| MoS <sub>2</sub> /Graphene<br>Composite Paper                                                       | Vacuum filtration                      | 218 mA h g <sup>-1</sup> after 20 cycles at 25 mA g <sup>-1</sup>                                                                         | [2]          |
| MoS <sub>2</sub> Embedded in<br>Carbon Nanofibers                                                   | Electrospinning process                | 300 mA h g <sup>-1</sup> after 100 cycles at 1000 mA g <sup>-1</sup>                                                                      | [3]          |
| MoS <sub>2</sub> /Graphene<br>Composites                                                            | Hydrothermal method                    | 312.7 mA h g <sup>-1</sup> after 200 cycles at 100 mA g <sup>-1</sup>                                                                     | [4]          |
| Vine-like MoS <sub>2</sub><br>Fiber                                                                 | Electrospinning process                | 470 mA h g <sup>-1</sup> after 30 cycles at 100 mA g <sup>-1</sup>                                                                        | [5]          |
| MoS <sub>2</sub> /Carbon<br>Composite                                                               | Hydrothermal method                    | 400 mA h g <sup>-1</sup> after 300 cycles at 670 mA g <sup>-1</sup>                                                                       | [6]          |
| MoS <sub>2</sub> Nanoflowers                                                                        | Hydrothermal method                    | 320 mA h g <sup>-1</sup> after 600 cycles at 200 mA g <sup>-1</sup>                                                                       | [7]          |
| Ultrathin MoS <sub>2</sub><br>Nanosheets                                                            | Ultrasonic<br>exfoliation<br>technique | 251 mA h g <sup>-1</sup> after 100 cycles at 320 mA g <sup>-1</sup>                                                                       | [8]          |
| WS <sub>2</sub> @3D RGO<br>Compsoite                                                                | Spray pyrolysis                        | 334 mA h g <sup>-1</sup> after 200 cycles at 200 mA g <sup>-1</sup> and 287 mA h g <sup>-1</sup> at 900 mA g <sup>-1</sup>                | This<br>work |

[1] D. Su, S. Dou and G. Wang, Chem. Commun., 2014, 50, 4192–4195.

[2] L. David, R. Bhandavat and G. Singh, ACS Nano, 2014, 8, 1759–1770.

[3] C. Zhu, X. Mu, P. A. van Aken, Y. Yu and J. Maier, Angew. Chem. Int. Ed., 2014, 53, 2152-2156.

[4] Y. X. Wang, S. L. Chou, D. Wexler, H. K. Liu and S. X. Dou, Chem. Eur. J., 2014, 20, 9607-9612.

[5] W. H. Ryu, J. W. Jung, K. Park, S. J. Kim and I. D. Kim, Nanoscale, 2014, 6, 10975-10981.

[6] J. Wang, C. Luo, T. Gao, A. Langrock, A. C. Mignerey and C. Wang, Small, 2014, DOI: 10.1002/smll.201401521.

[7] Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao and J. Chen, Angew. Chem. Int. Ed., 2014, 53, 12794-12798.

[8] D. Su, S. Dou and G. Wang, Adv. Energy Mater. 2014, 1401205.