Electronic Supplementary Information

Copper nanoparticles of well-controlled size and shape: a new advance in synthesis and self-organization.

Mohamed Ali Ben Aissa,[†] Benoit Tremblay,[‡] Amandine Andrieux-Ledier[‡], Emmanuel Maisonhaute[§], Noureddine Raouafi[†] and Alexa Courty[‡]*

[†]Laboratoire de Chimie Analytique et Electrochimie, Département de Chimie, Faculté des Sciences de Tunis,
^{Université} de Tunis El Manar, campus universitaire de Tunis El Manar, 2092 Tunis El Manar, Tunisie.
[‡] Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, Laboratoire MONARIS, F-75005 Paris, France.

CNRS, UMR 8233, Laboratoire MONARIS, F-75005, Paris, France

§ Sorbonne Universités, UPMC Univ Paris 06, UMR 8235, Laboratoire Interfaces et Systèmes Electrochimiques, F-75005 Paris, France.

CNRS, UMR 8235, LISE, F-75005, Paris, France

All chemical products are used as received without further purification.

Synthesis of ClCu(PPh₃)₃

The synthesis is performed under air. A solution of 22.28 g of triphenylphosphine (PPh₃) in 380 mL of ethanol is slowly heated under stirring until the triphenylphosphine is dissolved. Then 2.68 g of copper cloride (II) is progressively added. The heterogeneous mixture is stirred during ten minutes and cooled to room temperature. Under filtration a white powder is obtained. This powder is washed several times with ethanol and diethylether. Then it is dried under vacuum and kept in a dark and dry atmosphere for future use.

Fig. S1. IR spectra of ClCu(PPh₃)₃

Fig. S2. a) and b) TEM images at different magnification of monolayers of 10.7 nm Cu NPs, formed at the ethylene glycol interface and transferred on a TEM grid, c) the Fourrier transform of image in b).