Electronic Supplementary Information

S1. Synthesis of PLGA-RHO

The preparation of PLGA-RHO conjugate was performed under inert nitrogen or argon atmosphere and dry conditions according to scheme 1.

The preparation of PLGA-Rhodamine conjugate was performed under inert nitrogen or argon atmosphere and dry conditions.

1. c-PLGA502H-N₃(figure S1.1): The terminal hydroxyl group of PLGA502H was changed into azide by two-step azidation with mesyl chloride activation. After 24 hours reaction mixture was simply concentrated and precipitated in diethyl ether methanol solution 1/1 v/v obtaining a sponge like solid. Thereafter, nucleophilic substitution with sodium azide was carried out in DMF/water solution (20/1 v/v) and temperature was set at 38°C for 24 hours. Reaction mixture was dried, redissolved in CHCl₃, filtered and precipitated in diethyl ether.

Scheme S1.1. c-PLGA502H-OH hydroxyl activation with mesyl chloride.

¹H-NMR analysis was used to confirm product chemical structure. As illustrated in figure S1.2A, in the ¹H-NMR spectrum of c-PLGA502H-OH, a-hydroxyl methylene (d) is quite visible at 4.31 ppm and is possible to adopt this signal as diagnostic standard for further reaction. NMR spectrum of c-PLGA502H-mesyl (figure S1.2B) was analyzed, comparing integration values of the signals related to the protons CH₃-CH- (a) (δ = 1.60) and terminal CH₃-OSO (e) (δ = 3.21). The conversion degree is higher than 95%. Other evidence of quantitative reaction is total disappearance of signal at 4.31 ppm related to α -hydroxyl methylene.

The reaction grade of nucleophilic addition to give c-PLGA502H-N₃, was evaluated comparing integrations values of the signals related to the protons CH3-CH- (a) (δ = 1.60) and terminal CH₂-N₃ (d) (δ = 4.30) (figure S1.2C). The conversion degree of c-PLGA502H-mesyl, within the limits of experimental error, was higher than 95%. Other evidence of quantitative reaction is the total disappearance of signal at 3.21 ppm related to mesyl group.

Figure S1.2. ¹H-NMR of A) c-PLGA502H-OH; B) c-PLGA502H-mesyl; C) c-PLGA502H-N₃ with proton assignment.

Also FTIR analysis shows clearly diagnostic stretching signal of azide at 2100 cm-1 (Figure S1.3).

Figure S1.3. FTIR spectrum of c-PLGA502H-N₃.

2. *Rhodamine coupling with* c-PLGA502H-N₃ (figure S1.4A):Rhodamine B was reacted with 3-Butynol in presence of DCC and DMAP to give alkyne ester. After 48 h reaction mixture was filtered from dicyclohexylurea, concentrated and purified by silica gel chromatography with CHCl₃/Methanol 9/1 v/v as eluent. Thereafter, the Huysgen cycloaddition between Rhodamine-alkyne and c-PLGA502H-N₃ was carried out (figure S1.4B) in 30% molar excess of Rhodamine-alkyne and cocatalyst N,N-Diisopropylethylamine (DIPEA), in 5/1 molar ratio between c-PLGA502H-N3 and the catalyst [(Ph)₃P]₃CuBr. After 48 h stirring at 35°C, reaction mixture was concentrated, purified by Cu(I) catalyst by neutral alumina column and precipitated in diethyl ether methanol solution 1/1 v/v.

Figure S1.4. A) reaction between Rhodamine B and 3-Butynol to give Rhodamine-alkyne; B) Huysgen cycloaddition between Rhodamine-alkyne and c-PLGA502H-N₃ to give final fluorescent polymer (PLGA-RHO).

¹H-NMR analysis was first used to confirm product chemical structure, Rhodamine-alkyne, comparing integrations values of the signals related to the protons CH3-CH- (a) (δ = 1.60) and terminal CH₂-O-CO (d) (δ = 4.30) (figure S1.5A) was evaluated that Rhodamine B conversion degree is higher than 95%.

The reaction grade Huisgen Cycloaddition to give c-PLGA502H-Rhodamine was evaluated, comparing integrations values of the signals related to the protons CH₃-CH- (a) (δ = 1.60) and terminal CH₂-O-CO (n) (δ = 4.20) (figure S1.5B) The final c-PLGA502H-N₃ conversion degree is, within the limits of experimental error, higher than 95%.

Figure S1.5. ¹H-NMR of A) Rhodamine-alkyne; B) c-PLGA502H-Rhodamine with proton assignment.

FTIR confirm quantitative coupling; can be noted, in fact, complete disappearance of diagnostic stretching signal of azide at 2100 cm⁻¹ (Figure S1.6).

Figure S1.6. FTIR spectrum of c-PLGA502H-Rhodamine.

S2. Stability of DTX/TPPS₄-dcNPs in different media.

Freeze-dried DTX/TPPS₄-dcNPs were dispersed in water, DMEM FBS- and DMEM FBS+.Hydrodynamic diameter, polydispersity index (PI) and zeta potential of NPs after each preparation step were determined on a ZetasizerNano Z (Malvern Instruments Ltd., UK). Results are reported as mean of three separate measurements of three different batches (n=9) ± SD.

Absorption spectra of freeze-dried DTX/TPPS₄-dcNPs dispersed in water was recorded on a UV 1800 (Shimadzu, Japan) using a 1 cm pathlength quartz cell.

As shown in Table S2, a slight size growth is observed n DMEM FBS- which becomes more marked in DMEM FBS+. In all the cases, no macroscopic aggregation of DTX/TPPS₄-dcNPs is observed. Nevertheless, zeta potential is decreased in the media tested and remains unaltered independently of the presence of proteins.

Table S2. Properties of freeze-dried DTX/TPPS₄-dcNPs in different media.

	Size	PI	Zeta potential
	nm		mV
Water	203 ± 10	0.15	-22
DMEM FBS-	244 ± 28	0.26	-9.5
DMEM FBS+	328 ± 10	0.27	-10.0

Figure S2. Absorption spectra of DTX/TPPS-dcNPsin water before and after freeze-drying.

S3. Intracellular localization of NPs

The intracellular localization of TPPS₄, free and in nanoparticles (TPPS₄-dcNPs) was determined by confocal microscopy. MDA-MB231 cells (6 x 10⁴), seeded in special tissue culture dishes for fluorescence microscopy (μ -Dish ^{35mm, high}, Ibidi GmbH, Planneg, Germany), wereallowed to growth for 24 h and then incubated for 24 h with 1 μ g/mL PS diluted in medium added with 3% FBS. Fifteen min before the end of the incubation with the PS, the cells were stained with BODIPY[®] FL C₅-Ceramide (15 μ M) orLysoTracker[®] Green DND-26 (75 nM) used as markers for Golgi apparatus and lysosomes, respectively. Cells were then washed twice with PBS with Ca²⁺ and Mg²⁺andimmediately analyzed with a Leica SP5 confocal laser-scanning microscope (Leica Microsystems Srl, Milan, Italy); the images were elaborated with the ImageJ software.

Figure S3. Confocal microscopy images showing the intracellular localization of $TPPS_4$ -dcNPs (A) and free $TPPS_4$ (B, C) in MDA-MB-231 cells incubated for 24 h. A and C: merged images of $TPPS_4$ and LysoTracker green; B: merged images of $TPPS_4$ and BODIPY[®] FL C5-ceramide.

S4. Cell cycle analysis

MDA-MB231 cells (1 × 10⁶) were seeded in 100 mm culture dishes and incubated with free DTX or DTX NPs for 24 h. Treated and control cells were harvested, fixed in 70% cold ethanol and stored at 4 °C overnight. Before analysis, cells were washed in distilled water, centrifuged and resuspended in 1 mL PBS containing 50 µg/mLpropidium iodide (Sigma-Aldrich) and 100 µg/mLRNAse, for DNA staining. Samples were incubated for 1 h at 37 °C and then analyzed by flow cytometry. Data from 2 × 10⁴ cells/sample were acquired with the FACSDivasoftware and analyzed with the ModFit LT 3.0 software (BD Biosciences) to determine alterations in cell cycle distribution.

Figure S4. Analysis of cell cycle of MDA-MB-231 cells exposed to free DTX or DTX-dcNPs for 24 h. Control cellsA); cells exposed to free DTX at 0.01 μ g/mLB) or 0.1 μ g/mL D); cells exposed to DTX-dcNPs at 0.01 μ g/mLC) or 0.1 μ g/mL E). Percentages of cells the various phases are shown in F).

Figure S5. Cell viability of MDA-MB-231 cells exposed up to 72 h to increasing concentrations of empty dcNPs.

Figure S6. Viability of MDA-MB-231 cells exposed for 24 h to increasing concentrations of empty dcNPs and kept for additional 24 h in complete medium after being or not exposed to 8 J/cm² of blue light.