

Inkjet printing upconversion nanoparticles for anti-counterfeit applications

Minli You,^{*a,b} Junjie Zhong,^{*b,c} Yuan Hong,^{b,d} Zhenfeng Duan,^e Min Lin^{‡a,b,e} and Feng Xu^{‡a,b}

^a The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China. *E-mail:* fengxu@mail.xjtu.edu.cn

^b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China. *E-mail:* minlin@mail.xjtu.edu.cn

^c School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China.

^d College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China.

^e Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA

* The authors contributed equally. ‡ Co-corresponding authors.

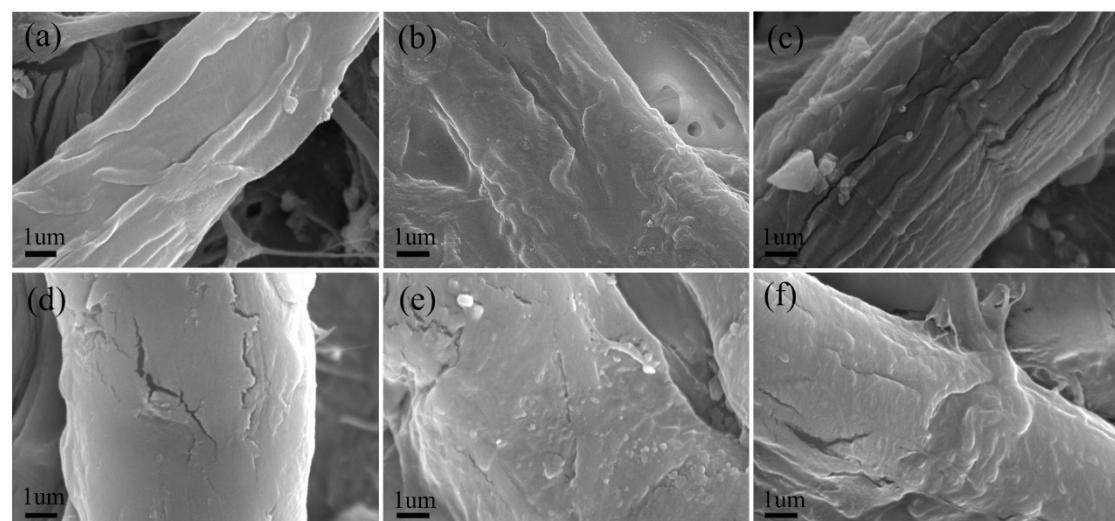


Figure. S1 SEM micrograph of A4 duplicating paper before (a) and after printed with solvent based ink (b) or aqueous based ink (c); vegetable parchment paper before (d) and after printed with solvent based ink (e) and aqueous based ink (f).