Supporting Information

Wet-spun, Porous, Orientational Graphene Hydrogel Films for High-performance Supercapacitor Electrodes

Liang Kou,^{a,b} Zheng Liu,^a Tieqi Huang,^a Bingna Zheng,^a Zhanyuan Tian,^b Zengshe Deng^b and Chao Gao^{*a}

Figure S1 The schematic diagram for fabricating graphene oxide hydrogel film (A) and digital photo of line-shape flat nozzle (B).

Figure S2 The digital photo of the test device for two-electrode system.

Figure S4 TGA curves of GHF-HT, GHF-HZ and GHF-HI.

Table S1 Comparison of electrochemical performance of our GHF-HZsupercapacitors (yellow column) with supercapacitors using graphene hydrogelelectrodes.

Preparation method	Current	Specific	GHF-HZ
	density (A/g)	capacitance (F/g)	in this
		of literature	work (F/g)
GO, L-glutathione, 95°C	1	157.7	203
[1]	10	92	188
GO, ascorbic acid, 180 °C	1	186	203
[2]	20	152	176
GO, 180 °C ^[3]	10 mV/s	175	226
	20 mV/s	152	215
GO, ethylene diamine, hydrazine, 90 °C ^[4]	1	144, 191, 232	203
GO, 180 °C, followed by	1	205	203
hydrazine reduction ^[5]			
GO, ethylene diamine, 180 °C ^[6]	20	120	176
GO, hydroquinone	1	441, 211 (without	203
100 C		hydroquinone)	
GO, hydrazine, NH ₃ , 95 °C ^[8]	1	215	203

Reference

- [1] H. Gao, F. Xiao, C. B. Ching, H. Duan, ACS Applied Materials & Interfaces
 2012, 4, 2801-2810.
- Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, ACS Nano 2013, 7, 4042-4049.
- [3] Y. Xu, K. Sheng, C. Li, G. Shi, ACS Nano **2010**, *4*, 4324-4330.

- [4] V. H. Luan, H. N. Tien, L. T. Hoa, N. T. M. Hien, E.-S. Oh, J. Chung, E. J.
 Kim, W. M. Choi, B.-S. Kong, S. H. Hur, *Journal of Materials Chemistry A* 2013, 1, 208-211.
- [5] L. Zhang, G. Shi, *The Journal of Physical Chemistry C* 2011, *115*, 17206-17212.
- [6] P. Chen, J.-J. Yang, S.-S. Li, Z. Wang, T.-Y. Xiao, Y.-H. Qian, S.-H. Yu, *Nano Energy* 2013, 2, 249-256.
- [7] Y. Xu, Z. Y. Lin, X. Q. Huang, Y. Wang, Y. Huang, X. F. Duan, Advanced Materials 2013, 25, 5779-5784.
- [8] X. W. Yang , J.W. Zhu , L. Qiu , D. Li, *Advanced Materials* 2011, 23, 2833-2838.