Electronic Supplementary Information

A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO₂/graphene for sodium-ion batteries

Xiuqiang Xie,* Dawei Su, Jinqiang Zhang, Shuangqiang Chen, Anjon Kumar Mondal, Guoxiu Wang*

Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology

Sydney, Broadway, Sydney, NSW 2007, Australia E-mail: <u>xiexiuqiang@gmail.com</u>, <u>Guoxiu.Wang@uts.edu.au</u>

Figure S1. Schematic illustration for the preparation of SnO₂/NG nanohybrids.

Figure S2. TGA curves of the SnO₂/G and SnO₂/NG.

Figure S3. N_2 sorption isotherms of the SnO₂/G (a) and SnO₂/NG composites (b). Pore size distribution of the SnO₂/G (c) and SnO₂/NG composites (d).

Figure S4. CV profiles of NG at a scan rate of 0.1 mV s⁻¹ between 0.01 and 3.0 V.

Figure S5. Chare-discharge curves of bare SnO_2 at a current density of 20 mA g⁻¹.

Figure S6. Galvanostatic charge-discharge profiles of the SnO_2/NG and SnO_2/G composites of the 50th cycle (a) and 100th cycle (b) at 20 mA g⁻¹.

Figure S7. SEM images of SnO₂/NG electrode after 100 cycles.

Electrode	$R_{e}(\Omega)$	$R_{f} + R_{ct} \left(\Omega \right)$
SnO ₂ /G	6.6	301.4
SnO ₂ /NG	4.6	254.8

Table S1. Kinetic parameters of SnO_2/G and SnO_2/NG electrodes.