Full Paper DOI: 10.1039/

Supporting Information

Facile fabrication of wafer-scale MoS₂ neat films with enhanced third-order nonlinear optical performance

Xiaoyan Zhang, Saifeng Zhang, Chunxia Chang, Yanyan Feng, Yuanxin Li, Ningning Dong, Kangpeng Wang, Long Zhang, Werner J. Blau and Jun Wang*

Dr. X.Y. Zhang, Dr. S. F. Zhang, C. X. Chang, Y. Y. Feng, Y. X. Li, Dr. N. N. Dong,
K. P. Wang, Prof. L. Zhang, Prof. J. Wang
Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and
Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.
Email: jwang@siom.ac.cn (J. Wang)

Prof. Werner J. Blau

School of Physics and the Centre for Research on Adaptative Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland

Figure S1. (a) SEM image and (b) XRD pattern of bulk MoS₂ powders. (c) SEM image and (d) XRD pattern of MoS₂ filtered thin film.

Figure S2. Schematic diagram of a three-level system used for modeling of

saturable absorption

Figure S3. Schematic diagram of NLO mechanism of monolayer and multilayer MoS_2 nanosheets at 515 and 1030 nm. Both monolayer and multilayer MoS_2 nanosheets exhibit saturable absorption (SA) performance at 515 nm with one photon energy of 2.4 eV, while the mechanism at 1030 nm with one photon energy of 1.2 eV is SA for multilayer ones and two-photon absorption (TPA) for monolayer ones

unificient memorane pore sizes.												
Samples	1500 rpm/1mL			3000 rpm/4mL					6000 rpm/4mL			
$\Phi_{\rm m} [{\rm nm}]$	50	100	220		50	100	220		50	100	220	
<i>L</i> [nm]	74	63	23		118	111	56		63	60	30	

Table S1 Thicknesses of MoS_2 thin films from different MoS_2 dispersions usingdifferent membrane pore sizes

Note: Φ_m , the pore size of nitrocellulose membrane; *L*, the thickness of transferred MoS₂ films with an error range of ± 5 nm; /1mL, 1 mL of MoS₂ dispersions was diluted into 60 mL for vacuum filtration each time; /4 mL, 4 mL of MoS₂ dispersions was diluted into 60 mL for vacuum filtration each time.

			~2P		0			P		
Samples	<i>r</i> /rpm ^a : 1500	3000	6000	$arPsi_{ m m}/ m nm^{ m b}$:	50	100	220	6000 rpr	n ^c	
<i>L</i> [nm]	63	47	45		60	47	56	45 63	70	
<i>R</i> [nm]	13	14	15		11	12	9	12 14	13	

Table S2 The average surface roughness for MoS_2 thin films with different film thicknesses from different MoS_2 dispersions using different membrane pore sizes.

Note: *L*, the thickness of transferred MoS₂ films with an error range of \pm 5 nm; *R*, the mean surface roughness of the films obtained from AFM with an error range of \pm 2 nm; a, the films fabricated with different centrifugation rates (1500, 3000 and 6000 rpm) with membrane pore size of 100 nm; b, the films with different membrane pore sizes (50, 100, and 220 nm) from dispersions with centrifugation rate as 3000 rpm; c, the films with different thicknesses from dispersions with centrifugation rate of 6000 rpm.

Table S3 Linear and NLO parameters of transferred MoS_2 neat film in compared to those of MoS_2 dispersions in cyclohexyl pyrrolidinone (CHP) and graphene filtered film.

Sample	Laser	L	T [%]	α_0 [cm ⁻ ¹]	n	α _{SA} [cm GW ⁻ ¹]	I _s [GW cm ⁻²]	Im χ ⁽³⁾ [esu]	FOM [esu cm]
MoS2	515 nm, 100 Hz	90 nm	65.0	4.7× 104	6.8 [1]	-2.1×10 ⁴	2.2	-1.6×10 ⁻⁷	3.3× 10 ⁻
film	1030 nm, 1000 Hz	90 nm	87.0	1.5× 104	4.4	-82.9	171	-5.3×10-	3.4× 10- 14
MoS ₂ in	515 nm,	1	7.9	25.34	1.5	-0.36	58	-1.3×10-	5.1× 10-

	1000 Hz	mm						13	15
CHP [2]	1030 nm,	1	20.0	44 75	1.5	0.2.10-2	114	-6.7×10 ⁻	5.7× 10 ⁻
10	1000 Hz	mm	30.9	11.75		-9.2×10 ⁻²	114	14	15
	515 nm,	120		3.6×	2.6	2 0104	1.5	2 2 10 8	6.1× 10 ⁻
Graphe	100 Hz	nm	64.6	104	[3]	-2.0×10+	1.5	-2.2×10**	13
ne film	1030 nm,	110	83.0	1.7×	•		100	-1.7× 10-	1.0 × 10-
	100 Hz	nm		104	2.6	-/6.4	192	10	14

Note: *L*, the path length of the samples, for film is the film thickness with an error range of \pm 5 nm, for dispersion is the path length of quartz cuvette; *T*, linear transmission at low input energy; α_0 , linear absorption coefficient; *n*, refractive index; α_{SA} , nonlinear absorption coefficient; *I*_s, saturation intensity; Im $\chi^{(3)}$, the imaginary

third-order susceptibility, $Im \chi^{(3)} = \left[\frac{10^{-7}c\lambda n^2}{96\pi^2}\right] \alpha_{SA}_{; [4]}$ FOM, figure of merit (FOM) for the third-order optical nonlinearity, $FOM = \left|Im \chi^{(3)}/\alpha_0\right|_{. [4]}$ MoS₂ dispersions in CHP were obtained by liquid exfoliation method. ^[2]

Table	S4	NLO	parameters	of	transferred	MoS ₂	neat	film	in	compared	to	that	of
graphe	ene f	iltered	l film.										

Course la	T	<i>T</i> [0/]	$\sigma_{ m gs}$	$\sigma_{ m es}$	$\sigma_{ m gs}\!/\!\sigma_{ m es}$	Ν
Sample	Laser	<i>I</i> [%0]	[cm ²]	[cm ²]	[cm ²]	[cm ³]
MoS ₂ film	515 nm	65.0	4.7×10 ⁻¹⁵	2.0×10 ⁻¹⁵	0.7	1.0×10 ¹⁹
	1030 nm	87.0	2.9×10 ⁻¹⁷	1.5×10 ⁻¹⁷	0.5	5.3×10 ²⁰
Graphene	515 nm	64.6	3.3×10 ⁻¹⁵	6.4×10 ⁻¹⁶	0.2	1.0×10 ¹⁹
film	1030 nm	83.0	4.0×10 ⁻¹⁷	2.8×10 ⁻¹⁷	0.7	3.8×10 ²⁰

Note: σ_{gs} , ground-state absorption cross section; σ_{es} , excited-state absorption cross section; *N*, the absorber's effective density.

References

[1] a) S.-L. Li, H. Miyazaki, H. S. Song, H. Kuramochi, S. Nakaharai, K. Tsukagoshi, *ACS Nano* 2012, 6(8), 7381. b) A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger, *Appl. Phys. Lett.* 2010, 96, 213116.

[2] K. P. Wang, J. Wang, J. T. Fan, M. Lotya, A. O'Neil, D. Fox, Y. Y. Feng, X. Y. Zhang, B. X. Jiang, Q. Z. Zhao, H. Z. Zhang, J. N. Coleman, L. Zhang, W. J. Blau, *ACS Nano* 2013, 7(10), 9260.

[3] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, Z. X. Shen, *Nano Lett.* 2007, 7(9), 2758.

[4] K. P. Wang, Y. Y. Feng, C. X. Chang, J. X. Zhan, C. W. Wang, Q. Z. Zhao, J. N.

Coleman, L. Zhang, W. J. Blau, J. Wang, Nanoscale 2014, 6, 10530.