Supplementary Information

Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters

Ho Young Kim,^{ab} Sooyeon Jeong,^c Seung Yol Jeong,^c Kang-Jun Baeg,^a Joong Tark Han,^a Mun Seok Jeong,^{*b} Geon-Woong Lee^{*a} and Hee Jin Jeong,^{*ac}

^aNano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 642-120, South Korea. E-mail: gwleephd@keri.re.kr

^bCenter for Integrated Nanostructure Physics, Institute for Basic Science, Department of Energy Science, Sungkyunkwan University, Suwon 440-746, South Korea. E-mail: mjeong@skku.edu

^cMultidimensional Nanomaterials Research Group, Korea Electrotechnology Research Institute (KERI), Changwon 642-120, South Korea. E-mail: wavicle11@keri.re.kr

Fig. S1 XPS spectra of (a) the Au-doped and (b) Al-doped 3D rGO emitters, respectively. The Au^{3+} was spontaneously reduced upon acceptance of electrons from the graphene, resulted in the Au^0 as a dominant Au species due to the higher reduction potential for the Au^{3+} compared to the rGO. In contrast, the rGO easily accepted electrons from Al⁰ due to the negative relative reduction potential from Al to rGO, resulted in the Al^{3+} as a dominant Al species.

Fig. S2 SEM image of (a) the undoped, (b) Au-doped, and (c) Al-doped 3D rGO emitters, respectively. The scale bars indicate 200 μ m.