Electronic Supplementary Information

Unravelling "off-target" effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells

Giovanni L. Beretta,^{a,} Marco Folini,^{a,} Francesca Cavalieri,^{b,c} Yan Yan,^c Enrico Fresch,^b Subramanian Kaliappan,^b Christoph Hasenöhrl,^d Joseph J. Richardson,^c Stella Tinelli,^a Andreas Fery,^d Frank Caruso,^{c,*} Nadia Zaffaroni^{a,*}

^aDepartment of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori,

Via G. Amadeo 42, 20133 Milan, Italy. Email: nadia.zaffaroni@istitutotumori.mi.it

^bDipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00173 Roma, Italy.

^cARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and

Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010. Australia. Email:

fcaruso@unimelb.edu.au

^d Department of Physical Chemistry II, University of Bayreuth, Bayreuth 95440, Germany

[‡]these authors contributed equally.

Fig. S1. Representative microscopy images showing a) pHPMA_{SH} μ C loaded with AF488-PLL; b) DIC microscopy image of intact pHPMA_{SH} μ C and broken μ C after 0.5 M DTT 1 h treatment (inset).

 7 ± 3

	"	_
	pHPMASH µCs	$PMA_{SH}\mu Cs$
Thickness [µm]	31 ± 3	10 ± 6

 6 ± 3

Stiffness [mN/m)]

Table S1. Structural properties of PMA_{SH} and $pHPMA_{SH}\,\mu Cs$

Fig S2. Representative force curves acquired on A) $PMA_{SH} \mu Cs$ and B) $pHPMA_{SH} \mu Cs$. Insets show AFM scans of μCs dried and immobilized onto a PEI-treated substrate.

Fig. S3. DU145 cell survival curves after 120 h exposure to PMA_{SH} polymer. Data are reported as a percentage of viable cells exposed to polymer compared with untreated cells. All data represent mean values \pm SD.

Fig. S4. Cellular uptake and distribution of pHPMA_{SH} μ Cs in PC-3 cells. A) The time-dependent uptake of AF647-labeled pHPMA_{SH} μ Cs was analyzed by flow cytometry. PC-3 cells were exposed to capsules at a capsule/cell ratio of 72:1. B) Representative deconvolution microscopy images showing the localization of AF488-labeled pHPMA_{SH} μ Cs (green) in PC-3 cells after 24 h exposure to a capsule/cell ratio of 500:1. Lysosomes are visualized after staining for the LAMP1 marker using an AF647 secondary antibody (red).

Fig. S5. A) PC-3 and B) DU145 cell survival curves after 96 h exposure to pHPMA-co-MA, pHPMA_{SS} with 15% thiol moieties, and PMA_{SS} polymer with 15% thiols groups. Data are reported as a percentage of viable cells exposed to polymers compared with untreated cells. All data represent mean values \pm SD.

Fig. S6. Representative Western immunoblotting showing LC3-I and II expression levels in DU145 cells exposed for 72 h and 96 h to $PMA_{SH} \mu Cs$ (125 μCs /cell). β -actin was used as control for equal protein loading.

Fig. S7. Representative Western immunoblotting showing survivin expression levels in DU145 cells exposed for 72 h and 96 h to $PMA_{SH} \mu Cs$ (125 μCs /cell). β -actin was used as control for equal protein loading.